Differential Geometry of Lightlike Submanifolds

This is the first systematic account of the main results in the theory of lightlike submanifolds of semi-Riemannian manifolds which have a geometric structure, such as almost Hermitian, almost contact metric or quaternion Kähler. Using these structures, the book presents interesting classes of subma...

Full description

Main Authors: Duggal, Krishan L., Sahin, Bayram (Author)
Corporate Author: SpringerLink (Online service)
Format: eBook
Language:English
Published: Basel Birkhäuser Basel 2010, 2010
Edition:1st ed. 2010
Series:Frontiers in Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02238nmm a2200301 u 4500
001 EB000368458
003 EBX01000000000000000221510
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9783034602518 
100 1 |a Duggal, Krishan L. 
245 0 0 |a Differential Geometry of Lightlike Submanifolds  |h Elektronische Ressource  |c by Krishan L. Duggal, Bayram Sahin 
250 |a 1st ed. 2010 
260 |a Basel  |b Birkhäuser Basel  |c 2010, 2010 
300 |a 488 p  |b online resource 
505 0 |a Preliminaries -- Lightlike hypersurfaces -- Applications of lightlike hypersurfaces -- Half-lightlike submanifolds -- Lightlike submanifolds -- Submanifolds of indefinite Kähler manifolds -- Submanifolds of indefinite Sasakian manifolds -- Submanifolds of indefinite quaternion Kähler manifolds -- Applications of lightlike geometry 
653 |a Differential Geometry 
653 |a Global differential geometry 
700 1 |a Sahin, Bayram  |e [author] 
710 2 |a SpringerLink (Online service) 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Frontiers in Mathematics 
856 |u https://doi.org/10.1007/978-3-0346-0251-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 516.36 
520 |a This is the first systematic account of the main results in the theory of lightlike submanifolds of semi-Riemannian manifolds which have a geometric structure, such as almost Hermitian, almost contact metric or quaternion Kähler. Using these structures, the book presents interesting classes of submanifolds whose geometry is very rich. The book also includes hypersurfaces of semi-Riemannian manifolds, their use in general relativity and Osserman geometry, half-lightlike submanifolds of semi-Riemannian manifolds, lightlike submersions, screen conformal submersions, and their applications in harmonic maps. Basic constructions and definitions are presented as preliminary background in every chapter. The presentation explores applications and suggests several open questions. This self-contained monograph provides up-to-date research in lightlike geometry and is intended for graduate students and researchers just entering this field