Photosensitive Molecules for Controlling Biological Function

The development of new photochemical tools, some synthesized by chemists and some provided by nature, is rapidly changing the way neurobiological research is performed in the modern laboratory.  In Photosensitive Molecules for Controlling Biological Function, expert researchers in the field examine...

Full description

Bibliographic Details
Other Authors: Chambers, James J. (Editor), Kramer, Richard H. (Editor)
Format: eBook
Language:English
Published: Totowa, NJ Humana 2011, 2011
Edition:1st ed. 2011
Series:Neuromethods
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03073nmm a2200301 u 4500
001 EB000366489
003 EBX01000000000000000219541
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9781617790317 
100 1 |a Chambers, James J.  |e [editor] 
245 0 0 |a Photosensitive Molecules for Controlling Biological Function  |h Elektronische Ressource  |c edited by James J. Chambers, Richard H. Kramer 
250 |a 1st ed. 2011 
260 |a Totowa, NJ  |b Humana  |c 2011, 2011 
300 |a XIV, 298 p  |b online resource 
505 0 |a Introduction to Part I: Caged Neurotransmitters -- Targeting and Excitation of Photoactivatable Molecules: Design Considerations for Neurophysiology Experiments -- Are Caged Compounds Still Useful? -- Chromophores for the Delivery of Bioactive Molecules with Two-Photon Excitation -- Introduction to Part II: Natural Photosensitive Proteins -- Light-Activated Ion Pumps and Channels for Temporally-Precise Optical Control of Activity in Genetically-Targeted Neurons -- Vertebrate and Invertebrate Rhodopsins: Light Control of G Protein Signaling -- Restoring Visual Function after Photoreceptor Degeneration: Ectopic Expression of Photosensitive Proteins in Retinal Neurons -- Introduction to Part III: Small Molecule Photoswitches -- Photoswitch Design -- Photoswitchable Voltage-Gated Ion Channels -- Optical Manipulation of Protein Activity and Protein Interactions Using Caged Proteins and Optical Switch Protein Conjugates -- Structure-Based Design of Light-Controlled Proteins -- Photoswitchable Ligand-Gated Ion Channels 
653 |a Neuroscience 
653 |a Neurosciences 
653 |a Neurochemistry 
700 1 |a Kramer, Richard H.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Neuromethods 
028 5 0 |a 10.1007/978-1-61779-031-7 
856 4 0 |u https://doi.org/10.1007/978-1-61779-031-7?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 612.8 
520 |a The development of new photochemical tools, some synthesized by chemists and some provided by nature, is rapidly changing the way neurobiological research is performed in the modern laboratory.  In Photosensitive Molecules for Controlling Biological Function, expert researchers in the field examine the most cutting-edge tools currently available.  Divided into three sections, this detailed compendium features techniques involving natural photosensitive proteins, caged neurotransmitters, and small molecule photoswitches that bestow light sensitivity on ion channels and receptors.  Written for the Neuromethods series, this volume features the type of meticulous description and implementation advice that is crucial for getting optimal results in the lab.   Authoritative and practical, Photosensitive Molecules for Controlling Biological Function provides an unbiased comparison of the various photochemical tools currently available for controlling neuronal activity in order to aid scientists in the vital goal of choosing the right tools for the right job