Computer Vision Using Local Binary Patterns

The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture wa...

Full description

Bibliographic Details
Main Authors: Pietikäinen, Matti, Hadid, Abdenour (Author), Zhao, Guoying (Author), Ahonen, Timo (Author)
Format: eBook
Language:English
Published: London Springer London 2011, 2011
Edition:1st ed. 2011
Series:Computational Imaging and Vision
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03803nmm a2200433 u 4500
001 EB000357700
003 EBX01000000000000000210752
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780857297488 
100 1 |a Pietikäinen, Matti 
245 0 0 |a Computer Vision Using Local Binary Patterns  |h Elektronische Ressource  |c by Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, Timo Ahonen 
250 |a 1st ed. 2011 
260 |a London  |b Springer London  |c 2011, 2011 
300 |a XVI, 212 p  |b online resource 
505 0 |a Background -- Local binary patterns for still images -- Spatiotemporal LBP -- Texture classification and segmentation -- Description of interest regions -- Applications in image retrieval and 3D recognition -- Recognition and segmentation of dynamic textures -- Background subtraction -- Recognition of actions -- Face analysis using still images -- Face analysis using image sequences -- Visual recognition of spoken phrases -- LBP in different applications 
653 |a Computer Imaging, Vision, Pattern Recognition and Graphics 
653 |a Signal, Image and Speech Processing 
653 |a Pattern recognition 
653 |a Image Processing and Computer Vision 
653 |a Biometrics (Biology) 
653 |a Pattern Recognition 
653 |a Image processing 
653 |a Biometrics 
653 |a Mathematics, general 
653 |a Speech processing systems 
653 |a Signal processing 
653 |a Mathematics 
653 |a Optical data processing 
700 1 |a Hadid, Abdenour  |e [author] 
700 1 |a Zhao, Guoying  |e [author] 
700 1 |a Ahonen, Timo  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Computational Imaging and Vision 
856 4 0 |u https://doi.org/10.1007/978-0-85729-748-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 510 
520 |a The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis.   Computer Vision Using Local Binary Patterns provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an  excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. Topics include:   - Local binary patterns and their variants in spatial and spatiotemporal domains - Texture classification and segmentation, description of interest regions - Applications in image retrieval and 3D recognition - Recognition and segmentation of dynamic textures - Background subtraction, recognition of actions - Face analysis using still images and image sequences, visual speech recognition - LBP in various applications   Written by pioneers of LBP, this book is an essential resource for researchers, professional engineers and graduate students in computer vision, image analysis and pattern recognition. The book will also be of interest to all those who work with specific applications of machine vision