Photoemission from Optoelectronic Materials and their Nanostructures

Photoemission from Optoelectronic Materials and Their Nanostructures is the first monograph to investigate the photoemission from low-dimensional nonlinear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, bismuth, carbon nanotubes, GaSb, IV-VI, Pb1-xGexTe, graphite, Te, II-V, ZnP2, CdP2 ,...

Full description

Bibliographic Details
Main Authors: Ghatak, Kamakhya Prasad, Bhattacharya, Sitangshu (Author), De, Debashis (Author)
Format: eBook
Language:English
Published: New York, NY Springer New York 2009, 2009
Edition:1st ed. 2009
Series:Nanostructure Science and Technology
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03619nmm a2200409 u 4500
001 EB000356675
003 EBX01000000000000000209727
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780387786063 
100 1 |a Ghatak, Kamakhya Prasad 
245 0 0 |a Photoemission from Optoelectronic Materials and their Nanostructures  |h Elektronische Ressource  |c by Kamakhya Prasad Ghatak, Sitangshu Bhattacharya, Debashis De 
250 |a 1st ed. 2009 
260 |a New York, NY  |b Springer New York  |c 2009, 2009 
300 |a XIX, 329 p. 209 illus  |b online resource 
505 0 |a Fundamentals of Photoemission from Wide Gap Materials -- Fundamentals of Photoemission from Quantum Wells in Ultrathin Films and Quantum Well Wires of Various Nonparabolic Materials -- Fundamentals of Photoemission from Quantum Dots of Various Nonparabolic Materials -- Photoemission from Quantum Confined Semiconductor Superlattices -- Photoemission from Bulk Optoelectronic Materials -- Photoemission under Quantizing Magnetic Field from Optoelectronic Materials -- Photoemission from Quantum Wells in Ultrathin Films, Quantum Wires, and Dots of Optoelectronic Materials -- Photoemission from Quantum Confined Effective Mass Superlattices of Optoelectronic Materials -- Photoemission from Quantum Confined Superlattices of Optoelectronic Materials with Graded Interfaces -- Review of Experimental Results -- Conclusion and Future Research 
653 |a Quantum Optics 
653 |a Semiconductors 
653 |a Materials Science 
653 |a Thin films 
653 |a Materials science 
653 |a Optical Materials 
653 |a Surfaces, Interfaces and Thin Film 
653 |a Quantum optics 
653 |a Optical materials 
653 |a Nanotechnology 
653 |a Surfaces (Technology) 
700 1 |a Bhattacharya, Sitangshu  |e [author] 
700 1 |a De, Debashis  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Nanostructure Science and Technology 
028 5 0 |a 10.1007/978-0-387-78606-3 
856 4 0 |u https://doi.org/10.1007/978-0-387-78606-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.11295 
520 |a Photoemission from Optoelectronic Materials and Their Nanostructures is the first monograph to investigate the photoemission from low-dimensional nonlinear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, bismuth, carbon nanotubes, GaSb, IV-VI, Pb1-xGexTe, graphite, Te, II-V, ZnP2, CdP2 , Bi2Te3, Sb, and IV-VI materials. The investigation leads to a discussion of III-V, II-VI, IV-VI and HgTe/CdTe quantum confined superlattices, and superlattices of optoelectronic materials. Photo-excitation changes the band structure of optoelectronic compounds in fundamental ways, which has been incorporated into the analysis of photoemission from macro- and micro-structures of these materials on the basis of newly formulated electron dispersion laws that control the studies of quantum effect devices in the presence of light. The importance of the measurement of band gap in optoelectronic materials in the presence of external photo-excitation has been discussed from this perspective. This monograph contains 125 open-ended research problems which form an integral part of the text and are useful for graduate courses on modern optoelectronics in addition to aspiring Ph.D.’s and researchers in the fields of materials science, computational and theoretical nano-science and -technology, semiconductor optoelectronics, quantized-structures, semiconductor physics and condensed matter physics