Lithium-Ion Batteries Science and Technologies

In developing electrochemical cells, one must keep in mind that the real goal is to package and control all the materials and components (cathode and anode active materials, electrolytes, separators, current collectors etc.) in a limited volume to enable maximum energy storage without creating any s...

Full description

Bibliographic Details
Other Authors: Yoshio, Masaki (Editor), Brodd, Ralph J. (Editor), Kozawa, Akiya (Editor)
Format: eBook
Language:English
Published: New York, NY Springer New York 2009, 2009
Edition:1st ed. 2009
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 03187nmm a2200385 u 4500
001 EB000355009
003 EBX01000000000000000208061
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780387344454 
100 1 |a Yoshio, Masaki  |e [editor] 
245 0 0 |a Lithium-Ion Batteries  |h Elektronische Ressource  |b Science and Technologies  |c edited by Masaki Yoshio, Ralph J. Brodd, Akiya Kozawa 
250 |a 1st ed. 2009 
260 |a New York, NY  |b Springer New York  |c 2009, 2009 
300 |a XXVI, 452 p  |b online resource 
505 0 |a Synopsis of the Lithium-Ion Battery Markets -- A Review of Positive Electrode Materials for Lithium-Ion Batteries -- Carbon Anode Materials -- Role-Assigned Electrolytes: Additives -- Carbon-Conductive Additives for Lithium-Ion Batteries -- Applications of Polyvinylidene Fluoride-related materials for Lithium-Ion Batteries -- SBR Binder (for Negative Electrode) and ACM Binder (for Positive Electrode) -- Production Processes for Fabrication of Lithium-Ion Batteries -- Polyanionic Cathode-Active Materials -- Overcharge Behavior of Metal Oxide-Coated Cathode Materials -- Development of Metal Alloy Anodes -- HEV Application -- Flame-Retardant Additives for Lithium-Ion Batteries -- High-Energy Capacitor Based on Graphite Cathode and Activated Carbon Anode -- Development of LiCoO 2 Used for Rechargeable Lithium-Ion Battery -- Cathode Materials: LiNiO2 and Related Compounds -- Manganese-Containing Cathode-Active Materials for Lithium-Ion Batteries -- Trends in Carbon Material as an Anode in Lithium-Ion Battery -- Functional Electrolytes Specially Designed for Lithium-Ion Batteries -- Lithium-Ion Battery Separators1 -- Polymer Electrolyte and Polymer Battery -- A Novel Hard-Carbon Optimized to Large-Size Lithium-Ion Secondary Batteries -- LiMn2O4 as a Large-Capacity Positive Material for Lithium-Ion Batteries 
653 |a Mechanical Power Engineering 
653 |a Physical chemistry 
653 |a Electric power production 
653 |a Inorganic chemistry 
653 |a Physical Chemistry 
653 |a Electrochemistry 
653 |a Chemistry, Technical 
653 |a Inorganic Chemistry 
653 |a Electrical Power Engineering 
653 |a Industrial Chemistry 
700 1 |a Brodd, Ralph J.  |e [editor] 
700 1 |a Kozawa, Akiya  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-0-387-34445-4 
856 4 0 |u https://doi.org/10.1007/978-0-387-34445-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 541.37 
520 |a In developing electrochemical cells, one must keep in mind that the real goal is to package and control all the materials and components (cathode and anode active materials, electrolytes, separators, current collectors etc.) in a limited volume to enable maximum energy storage without creating any safety problems. In this manner, Li-Ion batteries (LIB) were first introduced to practical use in 1991. This book contains an in-depth review of electrode materials, electrolytes and additives for LIB, as well as indicators of the future directions for continued maturation of the LIB.