Mechanics of Material Forces

In this single volume the reader will find all recent developments in one of the most promising and rapidly expanding branches of continuum mechanics, the mechanics of material forces. The book covers both theoretical and numerical developments. Conceptually speaking, common continuum mechanics in t...

Full description

Bibliographic Details
Other Authors: Steinmann, Paul (Editor), Maugin, Gérard A. (Editor)
Format: eBook
Language:English
Published: New York, NY Springer US 2005, 2005
Edition:1st ed. 2005
Series:Advances in Mechanics and Mathematics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 05146nmm a2200433 u 4500
001 EB000354182
003 EBX01000000000000000207234
005 00000000000000.0
007 cr|||||||||||||||||||||
008 130626 ||| eng
020 |a 9780387262611 
100 1 |a Steinmann, Paul  |e [editor] 
245 0 0 |a Mechanics of Material Forces  |h Elektronische Ressource  |c edited by Paul Steinmann, Gérard A. Maugin 
250 |a 1st ed. 2005 
260 |a New York, NY  |b Springer US  |c 2005, 2005 
300 |a XVI, 338 p  |b online resource 
505 0 |a 4d Formalism -- On Establishing Balance and Conservation Laws in Elastodynamics -- From Mathematical Physics to Engineering Science -- Evolving Interfaces -- The Unifying Nature of the Configurational Force Balance -- Generalized Stefan Models -- Explicit Kinetic Relation from “First Principles” -- Growth & Biomechanics -- Surface and Bulk Growth Unified -- Mechanical and Thermodynamical Modelling of Tissue Growth Using Domain Derivation Techniques -- Material Forces in the Context of Biotissue Remodelling -- Numerical Aspects -- Error-Controlled Adaptive Finite Element Methods in Nonlinear Elastic Fracture Mechanics -- Material Force Method. Continuum Damage & Thermo-Hyperelasticity -- Discrete Material Forces in the Finite Element Method -- Computational Spatial and Material Settings of Continuum Mechanics. An Arbitrary Lagrangian Eulerian Formulation -- Dislocations & Peach-Koehler-Forces -- Self-Driven continuous Dislocations and Growth --  
505 0 |a Role of the Non-Riemannian Plastic Connection in Finite Elasto-Plasticity with Continuous Distribution of Dislocations -- Peach-Koehler Forces within the Theory of Nonlocal Elasticity -- Multiphysics & Microstructure -- On the Material Energy-Momentum Tensor in Electrostatics and Magnetostatics -- Continuum Thermodynamic and Variational Models for Continua with Microstructure and Material Inhomogeneity -- A Crystal Structure-Based Eigentransformation and its Work-Conjugate Material Stress -- Fracture & Structural Optimization -- Teaching Fracture Mechanics Within the Theory of Strength-of-Materials -- Configurational Thermomech-Anics and Crack Driving Forces -- Structural Optimization by Material Forces -- On Structural Optimisation and Configurational Mechanics -- Path Integrals -- Configurational Forces and the Propagation of a CircularCrack in an Elastic Body -- Thermoplastic M Integral and Path Domain Dependence -- Delamination & Discontinuities -- Peeling Tapes --  
505 0 |a Stability and Bifurcation with Moving Discontinuities -- On Fracture Modelling Based on Inverse Strong Discontinuities -- Interfaces & Phase Transition -- Maxwell’s Relation for Isotropic Bodies -- Driving Force in Simulation of Phase Transition Front Propagation -- Modeling of the Thermal Treatment of Steel With Phase Changes -- Plasticity & Damage -- Configurational Stress Tensor in Anisotropic Ductile Continuum Damage Mechanics -- Some Class of SG Continuum Models to Connect Various Length Scales in Plastic Deformation -- Weakly Nonlocal Theories of Damage and Plasticity Based on Balance of Dissipative Material Forces 
653 |a Mechanics, Applied 
653 |a Materials Science 
653 |a Computational intelligence 
653 |a Materials science 
653 |a Computational Intelligence 
653 |a Solids 
653 |a Solid Mechanics 
653 |a Mathematical Modeling and Industrial Mathematics 
653 |a Mathematical physics 
653 |a Mathematics 
653 |a Mathematical Methods in Physics 
653 |a Mathematical models 
700 1 |a Maugin, Gérard A.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Advances in Mechanics and Mathematics 
028 5 0 |a 10.1007/b137232 
856 4 0 |u https://doi.org/10.1007/b137232?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.11 
520 |a In this single volume the reader will find all recent developments in one of the most promising and rapidly expanding branches of continuum mechanics, the mechanics of material forces. The book covers both theoretical and numerical developments. Conceptually speaking, common continuum mechanics in the sense of Newton—which gives rise to the notion of spatial (mechanical) forces—considers the response to variations of spatial placements of "physical particles” with respect to the ambient space, whereas continuum mechanics in the sense of Eshelby—which gives rise to the notion of material (configurational) forces—is concerned with the response to variations of material placements of "physical particles” with respect to the ambient material. Well-known examples of material forces are driving forces on defects like the Peach-Koehler forece, the J-Integral in fracture mechanics, and energy release. The consideration of material forces goes back to the works of Eshelby, who investigated forces on defects; therefore this area of continuum mechanics is sometimes denoted Eshelbian mechanics. Audience This book is suitable for civil and mechanical engineers, physicists and applied mathematicians