Relativistic Electron Mirrors from High Intensity Laser–Nanofoil Interactions

A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bright bursts of laser-like radiation in the short wavelength range simply via the reflection of a counter-propagating laser pulse. This thesis investigates the generation of such a r...

Full description

Bibliographic Details
Main Author: Kiefer, Daniel
Format: eBook
Language:English
Published: Cham Springer International Publishing 2015, 2015
Edition:1st ed. 2015
Series:Springer Theses, Recognizing Outstanding Ph.D. Research
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02194nmm a2200349 u 4500
001 EB000892730
003 EBX01000000000000000689850
005 00000000000000.0
007 cr|||||||||||||||||||||
008 140801 ||| eng
020 |a 9783319077529 
100 1 |a Kiefer, Daniel 
245 0 0 |a Relativistic Electron Mirrors  |h Elektronische Ressource  |b from High Intensity Laser–Nanofoil Interactions  |c by Daniel Kiefer 
250 |a 1st ed. 2015 
260 |a Cham  |b Springer International Publishing  |c 2015, 2015 
300 |a XIII, 117 p. 62 illus., 59 illus. in color  |b online resource 
505 0 |a Theoretical Background -- Experimental Methods: Lasers, Targets and Detectors -- Electron Acceleration from Laser-Nanofoil Interactions -- Coherent Thomson Backscattering from Relativistic Electron Mirrors 
653 |a Nanophysics 
653 |a Laser 
653 |a Plasma Physics 
653 |a Nanoscience 
653 |a Lasers 
653 |a Particle accelerators 
653 |a Plasma (Ionized gases) 
653 |a Accelerator Physics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research 
028 5 0 |a 10.1007/978-3-319-07752-9 
856 4 0 |u https://doi.org/10.1007/978-3-319-07752-9?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 530.44 
520 |a A dense sheet of electrons accelerated to close to the speed of light can act as a tuneable mirror that can generate bright bursts of laser-like radiation in the short wavelength range simply via the reflection of a counter-propagating laser pulse. This thesis investigates the generation of such a relativistic electron mirror structure in a series of experiments accompanied by computer simulations. It is shown that such relativistic mirror can indeed be created from the interaction of a high-intensity laser pulse with a nanometer-scale, ultrathin foil. The reported work gives a intriguing insight into the complex dynamics of high-intensity laser–nanofoil interactions and constitutes a major step towards the development of a relativistic mirror, which could potentially generate bright burst of X-rays on a micro-scale