Fault Diagnosis and Prognostics Based on Cognitive Computing and Geometric Space Transformation

This monograph introduces readers to new theories and methods applying cognitive computing and geometric space transformation to the field of fault diagnosis and prognostics. It summarizes the basic concepts and technical aspects of fault diagnosis and prognostics technology. Existing bottleneck pro...

Full description

Bibliographic Details
Main Authors: Lu, Chen, Tao, Laifa (Author), Ma, Jian (Author), Cheng, Yujie (Author)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2024, 2024
Edition:1st ed. 2024
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This monograph introduces readers to new theories and methods applying cognitive computing and geometric space transformation to the field of fault diagnosis and prognostics. It summarizes the basic concepts and technical aspects of fault diagnosis and prognostics technology. Existing bottleneck problems are examined, and the advantages of applying cognitive computing and geometric space transformation are explained. In turn, the book highlights fault diagnosis, prognostic, and health assessment technologies based on cognitive computing methods, including deep learning, transfer learning, visual cognition, and compressed sensing. Lastly, it covers technologies based on differential geometry, space transformation, and pattern recognition
Physical Description:XIV, 554 p. 357 illus., 281 illus. in color online resource
ISBN:9789819989171