|
|
|
|
LEADER |
02256nmm a2200361 u 4500 |
001 |
EB002249259 |
003 |
EBX01000000000000001386096 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
250102 ||| eng |
020 |
|
|
|a 9783031015908
|
100 |
1 |
|
|a Yang, Cheng
|
245 |
0 |
0 |
|a Network Embedding
|h Elektronische Ressource
|b Theories, Methods, and Applications
|c by Cheng Yang, Zhiyuan Liu, Cunchao Tu, Chuan Shi, Maosong Sun
|
250 |
|
|
|a 1st ed. 2021
|
260 |
|
|
|a Cham
|b Springer International Publishing
|c 2021, 2021
|
300 |
|
|
|a XXI, 220 p
|b online resource
|
505 |
0 |
|
|a Preface -- Acknowledgments -- The Basics of Network Embedding -- Network Embedding for General Graphs -- Network Embedding for Graphs with Node Attributes -- Revisiting Attributed Network Embedding: A GCN-Based Perspective -- Network Embedding for Graphs with Node Contents -- Network Embedding for Graphs with Node Labels -- Network Embedding for Community-Structured Graphs -- Network Embedding for Large-Scale Graphs -- Network Embedding for Heterogeneous Graphs -- Network Embedding for Social Relation Extraction -- Network Embedding for Recommendation Systems on LBSNs -- Network Embedding for Information Diffusion Prediction -- Future Directions of Network Embedding -- Bibliography -- Authors' Biographies
|
653 |
|
|
|a Machine Learning
|
653 |
|
|
|a Neural networks (Computer science)
|
653 |
|
|
|a Mathematical Models of Cognitive Processes and Neural Networks
|
653 |
|
|
|a Machine learning
|
653 |
|
|
|a Artificial Intelligence
|
653 |
|
|
|a Artificial intelligence
|
700 |
1 |
|
|a Liu, Zhiyuan
|e [author]
|
700 |
1 |
|
|a Tu, Cunchao
|e [author]
|
700 |
1 |
|
|a Shi, Chuan
|e [author]
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b Springer
|a Springer eBooks 2005-
|
490 |
0 |
|
|a Synthesis Lectures on Artificial Intelligence and Machine Learning
|
028 |
5 |
0 |
|a 10.1007/978-3-031-01590-8
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-3-031-01590-8?nosfx=y
|x Verlag
|3 Volltext
|
082 |
0 |
|
|a 006.3
|
520 |
|
|
|a heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions
|