|
|
|
|
LEADER |
01734nma a2200277 u 4500 |
001 |
EB002203987 |
003 |
EBX01000000000000001341188 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
240502 ||| deu |
020 |
|
|
|a 9783731513001
|
020 |
|
|
|a 1000158519
|
100 |
1 |
|
|a Anneken, Mathias
|
245 |
0 |
0 |
|a Anomaliedetektion in räumlich-zeitlichen Datensätzen
|h Elektronische Ressource
|
260 |
|
|
|b KIT Scientific Publishing
|c 2023
|
300 |
|
|
|a 1 electronic resource (264 p.)
|
653 |
|
|
|a spatio-temporal data; situation analysis; anomaly detection; räumlich-zeitliche Daten; Maritime Überwachung; Anomaliedetektion; maritime surveillance; Situationsanalyse; machine learning; Maschinelles Lernen
|
653 |
|
|
|a Maths for computer scientists / bicssc
|
041 |
0 |
7 |
|a deu
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
490 |
0 |
|
|a Karlsruher Schriften zur Anthropomatik
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/
|
028 |
5 |
0 |
|a 10.5445/KSP/1000158519
|
856 |
4 |
0 |
|u https://library.oapen.org/bitstream/20.500.12657/75885/1/anomaliedetektion-in-raumlich-zeitlichen-datensatzen.pdf
|7 0
|x Verlag
|3 Volltext
|
856 |
4 |
2 |
|u https://directory.doabooks.org/handle/20.500.12854/122253
|z DOAB: description of the publication
|
520 |
|
|
|a Human support in surveillance tasks is crucial due to the overwhelming amount of sensor data. This work focuses on the development of data fusion methods using the maritime domain as an example. Various anomalies are investigated, evaluated using real vessel traffic data and tested with experts. For this purpose, situations of interest and anomalies are modelled and evaluated based on different machine learning methods.
|