The Role of Nanofluids in Renewable Energy Engineering

Nanofluid flows are characterized by intricate and multi-level physics, which has led to substantial study from both fundamental and practical viewpoints. This collection examines the progress made in modeling and experimental methods used to study nanofluids. It specifically focuses on how these na...

Full description

Bibliographic Details
Main Author: Bhatti, M. M.
Other Authors: Vafai, Kambiz, Abdelsalam, Sara I.
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Mhd
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04854nma a2201165 u 4500
001 EB002195083
003 EBX01000000000000001332548
005 00000000000000.0
007 cr|||||||||||||||||||||
008 240202 ||| eng
020 |a books978-3-0365-9382-1 
020 |a 9783036593821 
020 |a 9783036593838 
100 1 |a Bhatti, M. M. 
245 0 0 |a The Role of Nanofluids in Renewable Energy Engineering  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (312 p.) 
653 |a heat-flow characteristics 
653 |a biodiesel 
653 |a Darcy-Brinkman-Forchheimer 
653 |a exponential heat source 
653 |a porous medium 
653 |a solar-thermal 
653 |a MHD 
653 |a carbon nanotubes 
653 |a morphology effect 
653 |a CNTs 
653 |a n/a 
653 |a power-law fluid model 
653 |a solar collector 
653 |a alcohol 
653 |a vegetable oil 
653 |a plasma functionalisation 
653 |a LiMPO4 
653 |a EMHD 
653 |a first-principle calculations 
653 |a density functional theory 
653 |a solar radiations 
653 |a solar coatings 
653 |a partial slip boundary conditions 
653 |a BC-ZrFe2O5 NCs 
653 |a dispersion stability 
653 |a thermal and velocity slip 
653 |a lithium transport 
653 |a computational analysis (shooting technique) 
653 |a cathode material 
653 |a stabilization mechanism 
653 |a solar-thermal nanofluids 
653 |a MgO-Ni nanoparticles 
653 |a nanofluid 
653 |a heat transfer 
653 |a triadic hybridize nanofluid model 
653 |a linear polarization 
653 |a Research & information: general / bicssc 
653 |a research hotspots 
653 |a polynomial theory 
653 |a mathematical modeling based on experimental data 
653 |a batch study 
653 |a stagnation point 
653 |a heat and mass flux 
653 |a Physics / bicssc 
653 |a stretching surface 
653 |a stagnation flow 
653 |a gyrotactic motile microorganisms 
653 |a medium-temperature nanofluid 
653 |a nanoparticles 
653 |a engine characteristics 
653 |a biochar 
653 |a fraction plasma modelling 
653 |a solar thermal energy conversion 
653 |a magnetic hybrid nanofluids 
653 |a copper nanoparticles 
653 |a response surface methodology 
653 |a direct-absorption solar collectors 
653 |a non-Newtonian nanofluids 
653 |a adsorption 
653 |a fuel properties 
653 |a lithium-ion battery 
653 |a olivine structure 
653 |a nanofluids 
653 |a Joule heating 
653 |a porous media 
700 1 |a Vafai, Kambiz 
700 1 |a Abdelsalam, Sara I. 
700 1 |a Bhatti, M. M. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-9382-1 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/8275  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/128808  |z DOAB: description of the publication 
082 0 |a 414 
082 0 |a 000 
082 0 |a 333 
082 0 |a 500 
082 0 |a 530 
082 0 |a 380 
082 0 |a 700 
082 0 |a 340 
520 |a Nanofluid flows are characterized by intricate and multi-level physics, which has led to substantial study from both fundamental and practical viewpoints. This collection examines the progress made in modeling and experimental methods used to study nanofluids. It specifically focuses on how these nanofluids might be used to tackle thermal challenges in renewable energy systems. The phenomenon of improving heat transfer via the use of nanofluids is well recognized; however, further research is necessary to comprehensively comprehend the interplay between nanoparticles and base fluids, as well as their influence on heat convection. Furthermore, the extensive use of nanofluids in solar thermal, geothermal, heat storage, and heat recovery systems has not been thoroughly investigated. The current difficulty is in creating precise and economical computational methods to forecast the heat transfer characteristics of nanofluids. This requires thorough experimental investigations at the system level. This edition highlights the significant contribution of nanofluid heat transfer in promoting carbon-free thermal technology and supporting the shift from fossil fuels to renewable energy sources, in line with the worldwide effort to decarbonize the energy sector.