Inverse problems and data assimilation

This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underp...

Full description

Bibliographic Details
Main Authors: Sanz-Alonso, Daniel, Stuart, Andrew (Author), Taeb, Armeen (Author)
Format: eBook
Language:English
Published: Cambridge Cambridge University Press 2023
Series:London Mathematical Society student texts
Subjects:
Online Access:
Collection: Cambridge Books Online - Collection details see MPG.ReNa
LEADER 01887nmm a2200277 u 4500
001 EB002193175
003 EBX01000000000000001330640
005 00000000000000.0
007 cr|||||||||||||||||||||
008 240201 ||| eng
020 |a 9781009414319 
050 4 |a QA371 
100 1 |a Sanz-Alonso, Daniel 
245 0 0 |a Inverse problems and data assimilation  |c Daniel Sanz-Alonso, Andrew Stuart, Armeen Taeb 
260 |a Cambridge  |b Cambridge University Press  |c 2023 
300 |a xvi, 210 pages  |b digital 
653 |a Inverse problems (Differential equations) 
700 1 |a Stuart, Andrew  |e [author] 
700 1 |a Taeb, Armeen  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b CBO  |a Cambridge Books Online 
490 0 |a London Mathematical Society student texts 
028 5 0 |a 10.1017/9781009414319 
856 4 0 |u https://doi.org/10.1017/9781009414319  |x Verlag  |3 Volltext 
082 0 |a 515.35 
520 |a This concise introduction provides an entry point to the world of inverse problems and data assimilation for advanced undergraduates and beginning graduate students in the mathematical sciences. It will also appeal to researchers in science and engineering who are interested in the systematic underpinnings of methodologies widely used in their disciplines. The authors examine inverse problems and data assimilation in turn, before exploring the use of data assimilation methods to solve generic inverse problems by introducing an artificial algorithmic time. Topics covered include maximum a posteriori estimation, (stochastic) gradient descent, variational Bayes, Monte Carlo, importance sampling and Markov chain Monte Carlo for inverse problems; and 3DVAR, 4DVAR, extended and ensemble Kalman filters, and particle filters for data assimilation. The book contains a wealth of examples and exercises, and can be used to accompany courses as well as for self-study