Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models

Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-perfor...

Full description

Bibliographic Details
Main Author: Madani, Ali
Other Authors: MacKinnon, Stephen (writer of foreword)
Format: eBook
Language:English
Published: Birmingham, UK Packt Publishing Ltd. 2023
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05745nmm a2200469 u 4500
001 EB002180765
003 EBX01000000000000001318252
005 00000000000000.0
007 cr|||||||||||||||||||||
008 231010 ||| eng
020 |a 9781800201132 
050 4 |a QA76.9.D43 
100 1 |a Madani, Ali 
245 0 0 |a Debugging machine learning models with Python  |b develop high-performance, low-bias, and explainable machine learning and deep learning models  |c Ali Madani ; foreword by Stephen MacKinnon 
260 |a Birmingham, UK  |b Packt Publishing Ltd.  |c 2023 
300 |a 1 online resource  |b illustrations 
505 0 |a Don't interpret your plots as you wish -- Bias and variance diagnosis -- Model validation strategy -- Error analysis -- Beyond performance -- Summary -- Questions -- References -- Chapter 5: Improving the Performance of Machine Learning Models -- Technical requirements -- Options for improving model performance -- Grid search -- Random search -- Bayesian search -- Successive halving -- Synthetic data generation -- Oversampling for imbalanced data -- Improving pre-training data processing -- Anomaly detection and outlier removal -- Benefitting from data of lower quality or relevance 
505 0 |a Best practices for high-quality Python programming -- Version control -- Debugging beyond Python -- Flaws in data used for modeling -- Data format and structure -- Data quantity and quality -- Data biases -- Model and prediction-centric debugging -- Underfitting and overfitting -- Inference in model testing and production -- Data or hyperparameters for changing landscapes -- Summary -- Questions -- References -- Chapter 2: Machine Learning Life Cycle -- Technical requirements -- Before we start modeling -- Data collection -- Data selection -- Data exploration -- Data wrangling -- Structuring 
505 0 |a System manipulation -- Secure and private machine learning techniques -- Transparency in machine learning modeling -- Accountable and open to inspection modeling -- Data and model governance -- Summary -- Questions -- References -- Part 2: Improving Machine Learning Models -- Chapter 4: Detecting Performance and Efficiency Issues in Machine Learning Models -- Technical requirements -- Performance and error assessment measures -- Classification -- Regression -- Clustering -- Visualization for performance assessment -- Summary metrics are not enough -- Visualizations could be misleading 
505 0 |a Enriching -- Data transformation -- Cleaning -- Modeling data preparation -- Feature selection and extraction -- Designing an evaluation and testing strategy -- Model training and evaluation -- Testing the code and the model -- Model deployment and monitoring -- Summary -- Questions -- References -- Chapter 3: Debugging toward Responsible AI -- Technical requirements -- Impartial modeling fairness in machine learning -- Data bias -- Algorithmic bias -- Security and privacy in machine learning -- Data privacy -- Data poisoning -- Adversarial attacks -- Output integrity attacks 
505 0 |a Cover -- Title Page -- Copyright -- Dedication -- Foreword -- Contributors -- Table of Contents -- Preface -- Part 1: Debugging for Machine Learning Modeling -- Chapter 1: Beyond Code Debugging -- Technical requirements -- Machine learning at a glance -- Types of machine learning modeling -- Supervised learning -- Unsupervised learning -- Self-supervised learning -- Semi-supervised learning -- Reinforcement learning -- Generative machine learning -- Debugging in software development -- Error messages in Python -- Debugging techniques -- Debuggers 
653 |a Machine learning / Computer simulation 
653 |a Debugging in computer science / Computer programs / http://id.loc.gov/authorities/subjects/sh86002705 
653 |a Debugging in computer science / Computer programs / fast 
653 |a Python (Computer program language) / fast 
653 |a Python (Langage de programmation) 
653 |a Apprentissage automatique / Simulation par ordinateur 
653 |a Débogueurs 
653 |a Python (Computer program language) / http://id.loc.gov/authorities/subjects/sh96008834 
700 1 |a MacKinnon, Stephen  |e writer of foreword 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
500 |a Includes index 
015 |a GBC3I5959 
776 |z 9781800201132 
776 |z 1800208588 
776 |z 1800201133 
776 |z 9781800208582 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781800208582/?ar  |x Verlag  |3 Volltext 
082 0 |a 005.1/4 
082 0 |a 500 
520 |a Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce