Program Targeting with Machine Learning and Mobile Phone Data Evidence from an Anti-Poverty Intervention in Afghanistan

Can mobile phone data improve program targeting By combining rich survey data from the baseline of a "big push" anti-poverty program in Afghanistan implemented in 2016 with detailed mobile phone logs from program beneficiaries, this paper studies the extent to which machine learning method...

Full description

Bibliographic Details
Main Author: Emily L., Aiken
Other Authors: Coville, Aidan, Joshua E., Blumenstock, Bedoya, Guadalupe
Format: eBook
Language:English
Published: Washington, D.C The World Bank 2022
Subjects:
Online Access:
Collection: World Bank E-Library Archive - Collection details see MPG.ReNa
LEADER 02042nmm a2200385 u 4500
001 EB002177632
003 EBX01000000000000001315166
005 00000000000000.0
007 cr|||||||||||||||||||||
008 231006 ||| eng
100 1 |a Emily L., Aiken 
245 0 0 |a Program Targeting with Machine Learning and Mobile Phone Data  |h Elektronische Ressource  |b Evidence from an Anti-Poverty Intervention in Afghanistan  |c Aiken Emily L 
260 |a Washington, D.C  |b The World Bank  |c 2022 
300 |a 47 pages 
653 |a Information Technology 
653 |a Targeting 
653 |a Targeting Ultra-Poor Household Data 
653 |a Recipients 
653 |a Machine Learning 
653 |a Science and Technology Development 
653 |a Information and Communication Technologies 
653 |a Poverty Reduction 
653 |a Services and Transfers to Poor 
653 |a Innovation 
653 |a Cash Transfers 
653 |a Mobile Phone Data 
700 1 |a Coville, Aidan 
700 1 |a Joshua E., Blumenstock 
700 1 |a Bedoya, Guadalupe 
041 0 7 |a eng  |2 ISO 639-2 
989 |b WOBA  |a World Bank E-Library Archive 
028 5 0 |a 10.1596/1813-9450-10252 
856 4 0 |u http://elibrary.worldbank.org/doi/book/10.1596/1813-9450-10252  |x Verlag  |3 Volltext 
082 0 |a 330 
520 |a Can mobile phone data improve program targeting By combining rich survey data from the baseline of a "big push" anti-poverty program in Afghanistan implemented in 2016 with detailed mobile phone logs from program beneficiaries, this paper studies the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from ineligible households. The paper shows that machine learning methods leveraging mobile phone data can identify ultra-poor households nearly as accurately as survey-based measures of consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source