|
|
|
|
LEADER |
01667nma a2200301 u 4500 |
001 |
EB002173585 |
003 |
EBX01000000000000001311362 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
230811 ||| eng |
020 |
|
|
|a 9783731512905
|
020 |
|
|
|a 1000156966
|
100 |
1 |
|
|a Puccetti, Luca
|
245 |
0 |
0 |
|a Self-Learning Longitudinal Control for On-Road Vehicles
|h Elektronische Ressource
|
260 |
|
|
|b KIT Scientific Publishing
|c 2023
|
300 |
|
|
|a 1 electronic resource (158 p.)
|
653 |
|
|
|a Regelungstechnik; Künstliche Intelligenz; Fahrzeugregelung; Längsdynamik; Bestärkendes Lernen; Control Theory; Artificial Intelligence; Vehicle Control; Longitudinal Dynamics; Reinforcement Learning
|
653 |
|
|
|a Electrical engineering / bicssc
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
490 |
0 |
|
|a Karlsruher Beiträge zur Regelungs- und Steuerungstechnik
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/
|
028 |
5 |
0 |
|a 10.5445/KSP/1000156966
|
856 |
4 |
0 |
|u https://library.oapen.org/bitstream/20.500.12657/63614/1/self-learning-longitudinal-control-for-on-road-vehicles.pdf
|7 0
|x Verlag
|3 Volltext
|
856 |
4 |
2 |
|u https://directory.doabooks.org/handle/20.500.12854/101654
|z DOAB: description of the publication
|
082 |
0 |
|
|a 700
|
082 |
0 |
|
|a 620
|
520 |
|
|
|a Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world experiments.
|