Self-Learning Longitudinal Control for On-Road Vehicles

Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world ex...

Full description

Bibliographic Details
Main Author: Puccetti, Luca
Format: eBook
Language:English
Published: KIT Scientific Publishing 2023
Series:Karlsruher Beiträge zur Regelungs- und Steuerungstechnik
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 01667nma a2200301 u 4500
001 EB002173585
003 EBX01000000000000001311362
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230811 ||| eng
020 |a 9783731512905 
020 |a 1000156966 
100 1 |a Puccetti, Luca 
245 0 0 |a Self-Learning Longitudinal Control for On-Road Vehicles  |h Elektronische Ressource 
260 |b KIT Scientific Publishing  |c 2023 
300 |a 1 electronic resource (158 p.) 
653 |a Regelungstechnik; Künstliche Intelligenz; Fahrzeugregelung; Längsdynamik; Bestärkendes Lernen; Control Theory; Artificial Intelligence; Vehicle Control; Longitudinal Dynamics; Reinforcement Learning 
653 |a Electrical engineering / bicssc 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
490 0 |a Karlsruher Beiträge zur Regelungs- und Steuerungstechnik 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.5445/KSP/1000156966 
856 4 0 |u https://library.oapen.org/bitstream/20.500.12657/63614/1/self-learning-longitudinal-control-for-on-road-vehicles.pdf  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/101654  |z DOAB: description of the publication 
082 0 |a 700 
082 0 |a 620 
520 |a Reinforcement Learning is a promising tool to automate controller tuning. However, significant extensions are required for real-world applications to enable fast and robust learning. This work proposes several additions to the state of the art and proves their capability in a series of real world experiments.