Identifying Optimal Indicators and Lag Terms for Nowcasting Models

Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any g...

Full description

Bibliographic Details
Main Author: Xie, Jing
Format: eBook
Language:English
Published: Washington, D.C. International Monetary Fund 2023
Series:IMF Working Papers
Subjects:
Online Access:
Collection: International Monetary Fund - Collection details see MPG.ReNa
LEADER 02717nmm a2200469 u 4500
001 EB002166503
003 EBX01000000000000001304281
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230704 ||| eng
020 |a 9798400235177 
100 1 |a Xie, Jing 
245 0 0 |a Identifying Optimal Indicators and Lag Terms for Nowcasting Models  |c Jing Xie 
260 |a Washington, D.C.  |b International Monetary Fund  |c 2023 
300 |a 38 pages 
651 4 |a India 
653 |a Dynamic Treatment Effect Models 
653 |a Macroeconomic Analyses of Economic Development 
653 |a Informal sector 
653 |a Forecasting and Other Model Applications 
653 |a Forecasting 
653 |a Economic forecasting 
653 |a Economics of specific sectors 
653 |a Time-Series Models 
653 |a Macroeconomics 
653 |a Economic & financial crises & disasters 
653 |a State Space Models 
653 |a Economic Forecasting 
653 |a Monetary Policy 
653 |a Economics 
653 |a Prices, Business Fluctuations, and Cycles: Forecasting and Simulation 
653 |a Diffusion Processes 
653 |a Economics: General 
653 |a Currency crises 
653 |a Dynamic Quantile Regressions 
041 0 7 |a eng  |2 ISO 639-2 
989 |b IMF  |a International Monetary Fund 
490 0 |a IMF Working Papers 
028 5 0 |a 10.5089/9798400235177.001 
856 4 0 |u https://elibrary.imf.org/view/journals/001/2023/045/001.2023.issue-045-en.xml?cid=530335-com-dsp-marc  |x Verlag  |3 Volltext 
082 0 |a 330 
520 |a Many central banks and government agencies use nowcasting techniques to obtain policy relevant information about the business cycle. Existing nowcasting methods, however, have two critical shortcomings for this purpose. First, in contrast to machine-learning models, they do not provide much if any guidance on selecting the best explantory variables (both high- and low-frequency indicators) from the (typically) larger set of variables available to the nowcaster. Second, in addition to the selection of explanatory variables, the order of the autoregression and moving average terms to use in the baseline nowcasting regression is often set arbitrarily. This paper proposes a simple procedure that simultaneously selects the optimal indicators and ARIMA(p,q) terms for the baseline nowcasting regression. The proposed AS-ARIMAX (Adjusted Stepwise Autoregressive Moving Average methods with exogenous variables) approach significantly reduces out-of-sample root mean square error for nowcasts of real GDP of six countries, including India, Argentina, Australia, South Africa, the United Kingdom, and the United States