Data fabric and data mesh approaches with AI a guide to AI-based data cataloging, governance, integration, orchestration, and consumption

Understand modern data fabric and data mesh concepts using AI-based self-service data discovery and delivery capabilities, a range of intelligent data integration styles, and automated unified data governance—all designed to deliver "data as a product" within hybrid cloud landscapes. This...

Full description

Bibliographic Details
Main Authors: Hechler, Eberhard, Weihrauch, Maryela (Author), Wu, Yan (Author)
Format: eBook
Language:English
Published: New York, NY Apress 2023
Edition:[First edition]
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 03829nmm a2200397 u 4500
001 EB002159930
003 EBX01000000000000001298045
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230516 ||| eng
020 |a 9781484292532 
050 4 |a QA76.9.B45 
100 1 |a Hechler, Eberhard 
245 0 0 |a Data fabric and data mesh approaches with AI  |b a guide to AI-based data cataloging, governance, integration, orchestration, and consumption  |c Eberhard Hechler, Maryela Weihrauch and Yan (Catherine) Wu 
246 3 1 |a Data fabric and data mesh approaches with artificial intelligence 
250 |a [First edition] 
260 |a New York, NY  |b Apress  |c 2023 
300 |a 440 pages  |b illustrations 
505 0 |a Includes bibliographical references and index 
505 0 |a Part I -- Data Fabric Foundation -- Chapter 1: Evolution of Data Architecture -- Chapter 2: Terminology -- Data Fabric and Data Mesh -- Chapter 3: Data Fabric and Data Mesh Use Case Scenarios -- Chapter 4: Data Fabric and Data Mesh Business Benefits -- Part II -- Key Data Fabric Capabilities and Concepts -- Chapter 5: Key Data Fabric and Data Mesh Capabilities -- Chapter 6: Relevant AI and ML Concepts -- Chapter 7: AI/ML for a Data Fabric and Data Mesh -- Chapter 8: AI for Entity Resolution -- Chapter 9: Data Fabric and Data Mesh for the AI Lifecycle -- Part III -- Deploying Data Fabric Solutions in Context -- Chapter 10: Data Fabric Architecture Patterns -- Chapter 11: Role of Data Fabric within an Enterprise Architecture -- Chapter 12: Data Fabric and Data Mesh in Hybrid Cloud Landscape -- Chapter 13: Intelligent Cataloging and Metadata Management -- Chapter 14: Automated Data Fabric and Data Mesh Aspects -- Chapter 15: Data Governance in the Context of Data Fabric and Data Mesh -- Part IV -- Current Offerings and Future Aspects -- Chapter 16: Sample Vendor Offerings -- Chapter 17: Data Fabric and Data Mesh Research Areas -- Chapter 18: In Summary and Onwards -- Abbreviations 
653 |a Big data / fast 
653 |a Big data / http://id.loc.gov/authorities/subjects/sh2012003227 
653 |a Artificial intelligence / fast 
653 |a Artificial intelligence / http://id.loc.gov/authorities/subjects/sh85008180 
653 |a Données volumineuses 
653 |a Intelligence artificielle 
653 |a artificial intelligence / aat 
700 1 |a Weihrauch, Maryela  |e author 
700 1 |a Wu, Yan  |e author 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
776 |z 1484292537 
776 |z 9781484292532 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781484292532/?ar  |x Verlag  |3 Volltext 
082 0 |a 005.7 
520 |a Understand modern data fabric and data mesh concepts using AI-based self-service data discovery and delivery capabilities, a range of intelligent data integration styles, and automated unified data governance—all designed to deliver "data as a product" within hybrid cloud landscapes. This book teaches you how to successfully deploy state-of-the-art data mesh solutions and gain a comprehensive overview on how a data fabric architecture uses artificial intelligence (AI) and machine learning (ML) for automated metadata management and self-service data discovery and consumption. You will learn how data fabric and data mesh relate to other concepts such as data DataOps, MLOps, AIDevOps, and more. Many examples are included to demonstrate how to modernize the consumption of data to enable a shopping-for-data (data as a product) experience. By the end of this book, you will understand the data fabric concept and architecture as it relates to themes such as automated unified data governance and compliance, enterprise information architecture, AI and hybrid cloud landscapes, and intelligent cataloging and metadata management