Advanced Polymer Simulation and Processing Volume II

Polymer-processing techniques are of the utmost importance for producing polymeric parts. They must produce parts with the desired qualities, which are usually related to mechanical performance, dimensional conformity, and appearance. Aiming to maximize the overall efficiency of the polymer-processi...

Full description

Bibliographic Details
Main Author: Pinto Fernandes, Célio
Other Authors: Faroughi, Salah Aldin, Ferrás, Luís L., Afonso, Alexandre M.
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Cfd
N/a
Cae
Fdm
Fem
Md
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 09655nma a2203013 u 4500
001 EB002157860
003 EBX01000000000000001295975
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230515 ||| eng
020 |a 9783036566665 
020 |a 9783036566672 
020 |a books978-3-0365-6667-2 
100 1 |a Pinto Fernandes, Célio 
245 0 0 |a Advanced Polymer Simulation and Processing  |h Elektronische Ressource  |b Volume II 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (484 p.) 
653 |a thermoplastic composites 
653 |a shielding 
653 |a molecular dynamics simulations 
653 |a coat-hanger die 
653 |a electrolyte 
653 |a model 
653 |a non-Newtonian fluids 
653 |a extrudate swell 
653 |a polymer extrusion 
653 |a state of charge 
653 |a elongational flow 
653 |a constant shear-rate die 
653 |a sheet die design 
653 |a Au nanoparticles 
653 |a deep learning 
653 |a LDPE 
653 |a load position 
653 |a Herschel-Bulkley fluids 
653 |a motor core 
653 |a GEANT4 code 
653 |a eXtended Pom-Pom 
653 |a total bond order 
653 |a poly(lactic acid) 
653 |a SIGMA 
653 |a plasticizing 
653 |a polymer solution 
653 |a plastic pallet 
653 |a molding flow analysis 
653 |a thermal annealing 
653 |a constitutive modeling 
653 |a multi-layer structure 
653 |a melt filling 
653 |a mold temperature control 
653 |a Taguchi method 
653 |a polymer blends 
653 |a viscoelasticity 
653 |a conformal cooling 
653 |a thermogravimetric analyzer (TGA) 
653 |a regression 
653 |a lime 
653 |a injection molding 
653 |a concentricity 
653 |a dilute polymeric solutions 
653 |a plasmonics 
653 |a pyrolysis 
653 |a bacterial cellulose 
653 |a annocatacin B 
653 |a ab initio molecular dynamics 
653 |a plastic optical barrel 
653 |a side chain 
653 |a thixotropy 
653 |a CFD 
653 |a computer-aided engineering tools 
653 |a log-conformation tensor approach 
653 |a pre-distribution 
653 |a flatness 
653 |a rapid tooling 
653 |a viscoelastic flows 
653 |a mold additive manufacturing 
653 |a microfluidic rheometry 
653 |a n/a 
653 |a thin wall injection molding 
653 |a Oldroyd-B fluid 
653 |a high energy pouch cell 
653 |a subtractive manufacturing 
653 |a CAE 
653 |a slow-release fertilizer 
653 |a non-isothermal effects 
653 |a short fibers 
653 |a lithium-ion 
653 |a simulation 
653 |a mitochondrial respiratory complex I 
653 |a FDM 
653 |a crystallinity 
653 |a Hirshfeld charges 
653 |a fillers 
653 |a numerical solution 
653 |a modeling 
653 |a suspensions 
653 |a thermal homogenisation 
653 |a OpenFOAM 
653 |a transfer learning 
653 |a polymer matrix 
653 |a transport behavior 
653 |a manufacturing process design 
653 |a X-ray photoelectron spectroscopy 
653 |a basic settings 
653 |a polyethylene recycling 
653 |a numerical simulation 
653 |a finite difference methods 
653 |a quality 
653 |a iron sheet 
653 |a polymer molds 
653 |a Phan-Thien-Tanner constitutive equation 
653 |a calcium and magnesium removal 
653 |a cement 
653 |a compound 
653 |a attenuation coefficient 
653 |a solvent viscosity contribution 
653 |a sustainability 
653 |a MM/PBSA 
653 |a trapezoidal-loop shear 
653 |a MRC-I 
653 |a anisotropy 
653 |a neural network 
653 |a melt blending 
653 |a free-surfaces 
653 |a structure 
653 |a machine learning 
653 |a nanoporous matter 
653 |a interface tracking 
653 |a blown film extrusion 
653 |a channel flow 
653 |a Taguchi 
653 |a multilateral 
653 |a vane extruder 
653 |a least-squares volume-to-point interpolation 
653 |a rodlike particles 
653 |a hydraulic fracturing 
653 |a ND1 subunit 
653 |a thermo-mechanical response 
653 |a leakage flow 
653 |a mold material 
653 |a hysteresis 
653 |a flash differential scanning calorimeter 
653 |a pipe flow 
653 |a conformal cooling channel 
653 |a finite element analysis (fem) 
653 |a fiber reinforced 
653 |a dielectric function 
653 |a polymer flows 
653 |a fiber shortening 
653 |a urea 
653 |a analytical solution 
653 |a roundness 
653 |a data-based 
653 |a gluing 
653 |a consistent PISO 
653 |a sequential valve gate system 
653 |a mold heating 
653 |a eccentric rotor extruder 
653 |a manufacturing 
653 |a prediction 
653 |a multiscale simulation 
653 |a visualization 
653 |a time-dependent viscoelastic property 
653 |a polymer processing 
653 |a micro-polar fluids 
653 |a drag coefficient 
653 |a Oldroyd-B model 
653 |a properties 
653 |a nanocomposite 
653 |a meshless interpolation 
653 |a multilayer perceptron 
653 |a dynamic image analysis 
653 |a modeling and simulation 
653 |a Giesekus fluid 
653 |a a family mold system 
653 |a FEM 
653 |a MD 
653 |a microstructure 
653 |a plasma treatment 
653 |a micropolar fluids 
653 |a hybrid injection molding 
653 |a CAE-DOE optimization 
653 |a particle settling 
653 |a antimicrobial activity 
653 |a penetration 
653 |a flax 
653 |a silver nanoparticles 
653 |a rheology 
653 |a pipe die 
653 |a degree of assembly 
653 |a artificial engineering 
653 |a yield stress 
653 |a polymer electrolyte membrane for fuel cell 
653 |a tailings flocculation 
653 |a partial charge 
653 |a cooling medium 
653 |a polypropylene 
653 |a mold characterization 
653 |a stacked learning 
653 |a sphere drag coefficient 
653 |a Monte Carlo 
653 |a polymer melt 
653 |a magnetron sputtering 
653 |a semi-analytical method 
653 |a artificial neural networks (ANN) 
653 |a continuous fiber-reinforced thermoplastics 
653 |a sodium carbonate 
653 |a green channels 
653 |a poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) 
653 |a boundary layer 
653 |a polymers 
653 |a rapid tooling technology 
653 |a lead nanoparticles 
653 |a finite volume method 
653 |a poly(ether ether ketone) 
653 |a temperature maps 
653 |a Herschel-Bulkley fluid 
653 |a heat pipe 
653 |a triangular-loop shear 
653 |a RGD peptide (1FUV) 
653 |a PEG-PCL 
653 |a industrial design 
653 |a mixed polymers 
653 |a suspension 
653 |a non-isothermal crystallization 
653 |a Giesekus 
653 |a extrusion 
653 |a glass fiber 
653 |a fiber reinforced polymer composites 
653 |a viscoelastic flow 
653 |a warpage 
653 |a Rivlin-Sawyers equation 
653 |a fully implicit coupled solver 
653 |a hemp 
653 |a seawater 
653 |a empirical derivation 
653 |a rubber compounds 
653 |a Carbopol 
653 |a proton 
700 1 |a Faroughi, Salah Aldin 
700 1 |a Ferrás, Luís L. 
700 1 |a Afonso, Alexandre M. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-6667-2 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6871  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/98098  |z DOAB: description of the publication 
082 0 |a 333 
082 0 |a 380 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Polymer-processing techniques are of the utmost importance for producing polymeric parts. They must produce parts with the desired qualities, which are usually related to mechanical performance, dimensional conformity, and appearance. Aiming to maximize the overall efficiency of the polymer-processing techniques, advanced modeling codes along with experimental measurements are needed to simulate and optimize the processes. Thus, this reprint exploits the digital transformation of the plastics industry, both through the creation of more robust and accurate modeling tools and the development of cutting-edge experimental techniques. Furthermore, it addresses advanced topics, such as crystallization during the solidification processes, prediction of fiber orientation in the cases of short and long fiber composites, prediction of the foaming process (such as microcellular foaming), and flow instabilities by including viscoelastic constitutive equations.