Interpretability in Deep Learning

This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of compute...

Full description

Bibliographic Details
Main Authors: Somani, Ayush, Horsch, Alexander (Author), Prasad, Dilip K. (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2023, 2023
Edition:1st ed. 2023
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of computer vision, optics and machine learning related topic. The book can be used as a monograph on interpretability in deep learning covering the most recent topics as well as a textbook for graduate students. Scientists with research, development and application responsibilities benefit from its systematic exposition.
Physical Description:XX, 466 p. 176 illus., 172 illus. in color online resource
ISBN:9783031206399