Energy Consumption in a Smart City

A Smart City is the perfect environment to study and exploit the interactions between actors because its architecture already integrates vaious elements to collect data and connect to its citizens. Furthermore, the proliferation of web platforms (e.g., social media and web fora) and the increased af...

Full description

Bibliographic Details
Main Author: Nastasi, Benedetto
Other Authors: Mauri, Andrea
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
N/a
Gis
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 05013nma a2201177 u 4500
001 EB002143679
003 EBX01000000000000001281805
005 00000000000000.0
007 cr|||||||||||||||||||||
008 230202 ||| eng
020 |a books978-3-0365-5963-6 
020 |a 9783036559643 
020 |a 9783036559636 
100 1 |a Nastasi, Benedetto 
245 0 0 |a Energy Consumption in a Smart City  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (270 p.) 
653 |a operative temperature 
653 |a thermal load 
653 |a digital twins 
653 |a tropical climate 
653 |a Geographic Information System (GIS) 
653 |a post-occupancy evaluation 
653 |a mixed reality 
653 |a phase shift control 
653 |a building performance assessment 
653 |a pulse duty cycle control 
653 |a n/a 
653 |a induction heating 
653 |a asymmetric duty cycle control 
653 |a district energy infrastructure 
653 |a energy consumption 
653 |a digital transformation 
653 |a Building Information Modelling (BIM) 
653 |a immersive technologies 
653 |a Zero Energy District (ZED) 
653 |a TRNSYS 
653 |a load shifting 
653 |a buildings retrofitting 
653 |a building operation and maintenance 
653 |a HOMER software 
653 |a occupants' satisfaction 
653 |a GIS 
653 |a extended reality 
653 |a occupant's comfort 
653 |a virtual reality 
653 |a metal melting 
653 |a cooling load 
653 |a building energy load 
653 |a energy transition 
653 |a series resonant inverter 
653 |a CO2 emission 
653 |a Research & information: general / bicssc 
653 |a carbon emission intensity 
653 |a Physics / bicssc 
653 |a variable frequency control 
653 |a Green Building Index 
653 |a smart city policy 
653 |a Digital Twin (DT) 
653 |a Revit software's 
653 |a green innovation 
653 |a energy saving 
653 |a difference-in-differences 
653 |a solar gains 
653 |a Renewable Energy Systems (RESs) 
653 |a historical buildings 
653 |a indoor environment quality 
653 |a decarbonisation of neighbourhoods 
653 |a daily energy need 
653 |a pulse density modulation 
653 |a building performance simulation 
653 |a metaverse 
653 |a climate change 
653 |a window allocation 
653 |a building energy flexibility 
653 |a future weather 
653 |a positive energy district 
653 |a peak clipping 
653 |a bifilar coil 
653 |a buildings office 
653 |a augmented reality 
653 |a economic feasibility 
653 |a nZEB 
700 1 |a Mauri, Andrea 
700 1 |a Nastasi, Benedetto 
700 1 |a Mauri, Andrea 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-5963-6 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/94568  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/6403  |7 0  |x Verlag  |3 Volltext 
082 0 |a 900 
082 0 |a 551.6 
082 0 |a 363 
082 0 |a 000 
082 0 |a 333 
082 0 |a 530 
082 0 |a 700 
082 0 |a 330 
520 |a A Smart City is the perfect environment to study and exploit the interactions between actors because its architecture already integrates vaious elements to collect data and connect to its citizens. Furthermore, the proliferation of web platforms (e.g., social media and web fora) and the increased affordability of sensors and IoT devices (e.g., smart meters) make data related to a large and diverse set of users accessible, as their activities in the digital world reflect their real-life actions. These new technologies can be of great use for the stakeholders as, on the one hand, they provide them with semantically rich inputs and frequent updates at a relatively cheap cost and, on the other, form a direct channel of communication with the citizens. To fully exploit these new data sources, we need both novel computational methods (e.g., AI, data mining algorithms, knowledge representation) that are suitable for analyzing and understanding the dynamics behind energy consumption and also a deeper understanding of how these methods can be integrated into the existing design and decision processes (e.g., human-in-the-loop processes).Therefore, this Special Issue welcomed original multidisciplinary research works about AI, data science methods, and their integration in existing design/decision-making processes in the domain of energy consumption in Smart Cities.