Nature-Inspired Optimization Methodologies in Biomedical and Healthcare

This book introduces a variety of well-proven and newly developed nature-inspired optimization algorithms solving a wide range of real-life biomedical and healthcare problems. Few solo and hybrid approaches are demonstrated in a lucid manner for the effective integration and finding solution for a l...

Full description

Bibliographic Details
Other Authors: Nayak, Janmenjoy (Editor), Das, Asit Kumar (Editor), Naik, Bighnaraj (Editor), Meher, Saroj K. (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2023, 2023
Edition:1st ed. 2023
Series:Intelligent Systems Reference Library
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02664nmm a2200361 u 4500
001 EB002134732
003 EBX01000000000000001272789
005 00000000000000.0
007 cr|||||||||||||||||||||
008 221201 ||| eng
020 |a 9783031175442 
100 1 |a Nayak, Janmenjoy  |e [editor] 
245 0 0 |a Nature-Inspired Optimization Methodologies in Biomedical and Healthcare  |h Elektronische Ressource  |c edited by Janmenjoy Nayak, Asit Kumar Das, Bighnaraj Naik, Saroj K. Meher, Sheryl Brahnam 
250 |a 1st ed. 2023 
260 |a Cham  |b Springer International Publishing  |c 2023, 2023 
300 |a XVIII, 293 p. 111 illus., 77 illus. in color  |b online resource 
505 0 |a Nature-Inspired Optimization Algorithms: Past to Present -- Preventing the early spread of infectious diseases using Particle Swarm Optimization -- Optimized gradient boosting tree-based model for obesity level prediction from patient’s physical condition and eating habits 
653 |a Health Informatics 
653 |a Biomedical engineering 
653 |a Computational intelligence 
653 |a Medical informatics 
653 |a Computational Intelligence 
653 |a Biomedical Engineering and Bioengineering 
700 1 |a Das, Asit Kumar  |e [editor] 
700 1 |a Naik, Bighnaraj  |e [editor] 
700 1 |a Meher, Saroj K.  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Intelligent Systems Reference Library 
028 5 0 |a 10.1007/978-3-031-17544-2 
856 4 0 |u https://doi.org/10.1007/978-3-031-17544-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.3 
520 |a This book introduces a variety of well-proven and newly developed nature-inspired optimization algorithms solving a wide range of real-life biomedical and healthcare problems. Few solo and hybrid approaches are demonstrated in a lucid manner for the effective integration and finding solution for a large-scale complex healthcare problem. In the present bigdata-based computing scenario, nature-inspired optimization techniques present adaptive mechanisms that permit the understanding of complex data and altering environments. This book is a voluminous collection for the confront faced by the healthcare institutions and hospitals for practical analysis, storage, and data analysis. It explores the distinct nature-inspired optimization-based approaches that are able to handle more accurate outcomes for the current biomedical and healthcare problems. In addition to providing a state-of-the-art and advanced intelligent methods, it also enlightens an insight for solving diversified healthcare problems such as cancer and diabetes