Bayesian Methods for Statistical Analysis

Bayesian methods for statistical analysis¡is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical m...

Full description

Bibliographic Details
Main Author: Puza, Borek
Format: eBook
Language:English
Published: ANU Press 2015, 2015
Subjects:
Online Access:
Collection: JSTOR Open Access Books - Collection details see MPG.ReNa
LEADER 02183nam a2200337 u 4500
001 EB002133444
003 EBX01000000000000001271501
005 00000000000000.0
007 tu|||||||||||||||||||||
008 221110 r ||| eng
020 |a 9781921934254 
020 |a 1921934255 
050 4 |a QA279.5 
100 1 |a Puza, Borek 
245 0 0 |a Bayesian Methods for Statistical Analysis  |h Elektronische Ressource 
260 |b ANU Press  |c 2015, 2015 
300 |a 1 online resource 
505 0 |a 1. Bayesian basics part 1 -- 2. Bayesian basics part 2 -- 3. Bayesian basics part 3 -- 4. Computational tools -- 5. Monte Carlo basics -- 6. MCMC methods part 1 -- 7. MCMC methods part 2 -- 8. Inference via WinBUGS -- 9. Bayesian finite population theory -- 10. Normal finite population models -- 11. Transformations and other topics -- 12. Biased sampling and nonresponse -- Appendix A: Additional exercises -- Appendix B: Distributions and notation -- Appendix C: Abbreviations and acronyms 
505 0 |a Includes bibliographical references 
653 |a Mathematics / Probability & Statistics / Bayesian Analysis 
653 |a Mathematics / Probability & Statistics 
653 |a Bayesian statistical decision theory 
653 |a Mathematics 
041 0 7 |a eng  |2 ISO 639-2 
989 |b ZDB-39-JOA  |a JSTOR Open Access Books 
028 5 0 |a 10.26530/OAPEN_611011 
776 |z 9781921934261 
776 |z 1921934263 
856 4 0 |u https://www.jstor.org/stable/10.2307/j.ctt1bgzbn2  |x Verlag  |3 Volltext 
082 0 |a 519.5/42 
520 |a Bayesian methods for statistical analysis¡is a book on statistical methods for analysing a wide variety of data. The book consists of 12 chapters, starting with basic concepts and covering numerous topics, including Bayesian estimation, decision theory, prediction, hypothesis testing, hierarchical models, Markov chain Monte Carlo methods, finite population inference, biased sampling and nonignorable nonresponse. The book contains many exercises, all with worked solutions, including complete computer code. It is suitable for self-study or a semester-long course, with three hours of lectures and one tutorial per week for 13 weeks