Truth, possibility, and probability new logical foundations of probability and statistical inference

Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This un...

Full description

Bibliographic Details
Main Author: Chuaqui, R.
Format: eBook
Language:English
Published: Amsterdam North-Holland 1991, 1991
Series:North-Holland mathematics studies
Subjects:
Online Access:
Collection: Elsevier eBook collection Mathematics - Collection details see MPG.ReNa
LEADER 03879nmm a2200577 u 4500
001 EB002120183
003 EBX01000000000000001258240
005 00000000000000.0
007 cr|||||||||||||||||||||
008 221028 ||| eng
020 |a 9780444888402 
020 |a 0444888403 
020 |a 9780080872773 
050 4 |a QA273 
100 1 |a Chuaqui, R. 
245 0 0 |a Truth, possibility, and probability  |b new logical foundations of probability and statistical inference  |c Rolando Chuaqui 
260 |a Amsterdam  |b North-Holland  |c 1991, 1991 
300 |a xvii, 484 pages  |b illustrations 
505 0 |a Includes bibliographical references (pages 469-473) and index 
505 0 |a Front Cover; Truth, Possibility and Probability; Copyright Page; Preface; Contents; List of Figures; Preliminaries; 1. Notation; 2. Probability; Part 1: The concept of probability; Chapter I. The problem of foundations; Chapter II. Truth, possibility, and probability; Chapter III. Probability models; Chapter IV. Principles of inference and decision; Chapter V.A medical example; Part 2: Elements of Probability Theory; Chapter VI. Probability theory; Chapter VII. Disjunctive spaces; Chapter VIII. Elements of infinitesimal analysis; Chapter IX. Integration; Chapter X. Probability distributions 
653 |a Wahrscheinlichkeitstheorie / gnd / http://d-nb.info/gnd/4079013-7 
653 |a Inferenzstatistik / gnd / http://d-nb.info/gnd/4247120-5 
653 |a Statistische Schlussweise / gnd / http://d-nb.info/gnd/4182963-3 
653 |a Probabilities / http://id.loc.gov/authorities/subjects/sh85107090 
653 |a Probabilidade (estatistica) / larpcal 
653 |a Statistiek / gtt 
653 |a Statistique mathématique / ram 
653 |a Entscheidungstheorie / gnd / http://d-nb.info/gnd/4138606-1 
653 |a Wahrscheinlichkeit / gnd 
653 |a Statistique mathématique 
653 |a Probabilités 
653 |a Logik / gnd / http://d-nb.info/gnd/4036202-4 
653 |a Logica / gtt 
653 |a Waarschijnlijkheid (statistiek) / gtt 
653 |a Probability 
653 |a Mathematical statistics / fast / (OCoLC)fst01012127 
653 |a Stochastisches Modell / gnd / http://d-nb.info/gnd/4057633-4 
653 |a Mathematical statistics / http://id.loc.gov/authorities/subjects/sh85082133 
653 |a MATHEMATICS / Probability & Statistics / General / bisacsh 
653 |a probability / aat 
653 |a Probabilités / ram 
653 |a Probabilities / fast / (OCoLC)fst01077737 
041 0 7 |a eng  |2 ISO 639-2 
989 |b ZDB-1-ELC  |a Elsevier eBook collection Mathematics 
490 0 |a North-Holland mathematics studies 
015 |a GBB739743 
776 |z 9780080872773 
776 |z 0080872778 
856 4 0 |u https://www.sciencedirect.com/science/bookseries/03040208/166  |x Verlag  |3 Volltext 
082 0 |a 519.2 
520 |a Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This unique book presents a new interpretation of probability, rooted in the traditional interpretation that was current in the 17th and 18th centuries. Mathematical models are constructed based on this interpretation, and statistical inference and decision theory are applied, including some examples in artificial intelligence, solving the main foundational problems. Nonstandard analysis is extensively developed for the construction of the models and in some of the proofs. Many nonstandard theorems are proved, some of them new, in particular, a representation theorem that asserts that any stochastic process can be approximated by a process defined over a space with equiprobable outcomes