Federated Learning Over Wireless Edge Networks

This book first presents a tutorial on Federated Learning (FL) and its role in enabling Edge Intelligence over wireless edge networks. This provides readers with a concise introduction to the challenges and state-of-the-art approaches towards implementing FL over the wireless edge network. Then, in...

Full description

Bibliographic Details
Main Authors: Lim, Wei Yang Bryan, Ng, Jer Shyuan (Author), Xiong, Zehui (Author), Niyato, Dusit (Author)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2022, 2022
Edition:1st ed. 2022
Series:Wireless Networks
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02798nmm a2200385 u 4500
001 EB002092184
003 EBX01000000000000001232276
005 00000000000000.0
007 cr|||||||||||||||||||||
008 221004 ||| eng
020 |a 9783031078385 
100 1 |a Lim, Wei Yang Bryan 
245 0 0 |a Federated Learning Over Wireless Edge Networks  |h Elektronische Ressource  |c by Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, Chunyan Miao 
250 |a 1st ed. 2022 
260 |a Cham  |b Springer International Publishing  |c 2022, 2022 
300 |a XV, 165 p. 51 illus., 47 illus. in color  |b online resource 
505 0 |a Federated Learning at Mobile Edge Networks: A Tutorial -- Multi-Dimensional Contract Matching Design for Federated Learning in UAV Networks -- Joint Auction-Coalition Formation Framework for UAV-assisted Communication-Efficient Federated Learning -- Evolutionary Edge Association and Auction in Hierarchical Federated Learning -- Conclusion and Future Works 
653 |a Machine learning 
653 |a Machine Learning 
653 |a Computational intelligence 
653 |a Artificial Intelligence 
653 |a Computational Intelligence 
653 |a Telecommunication 
653 |a Artificial intelligence 
653 |a Communications Engineering, Networks 
700 1 |a Ng, Jer Shyuan  |e [author] 
700 1 |a Xiong, Zehui  |e [author] 
700 1 |a Niyato, Dusit  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Wireless Networks 
028 5 0 |a 10.1007/978-3-031-07838-5 
856 4 0 |u https://doi.org/10.1007/978-3-031-07838-5?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 621.382 
520 |a This book first presents a tutorial on Federated Learning (FL) and its role in enabling Edge Intelligence over wireless edge networks. This provides readers with a concise introduction to the challenges and state-of-the-art approaches towards implementing FL over the wireless edge network. Then, in consideration of resource heterogeneity at the network edge, the authors provide multifaceted solutions at the intersection of network economics, game theory, and machine learning towards improving the efficiency of resource allocation for FL over the wireless edge networks. A clear understanding of such issues and the presented theoretical studies will serve to guide practitioners and researchers in implementing resource-efficient FL systems and solving the open issues in FL respectively. Provides a concise introduction to Federated Learning (FL) and how it enables Edge Intelligence; Highlights the challenges inherent to achieving scalable implementation of FL at the wireless edge; Presents how FL can address challenges resulting from the confluence of AI and wireless communications