Knowledge Modelling and Learning through Cognitive Networks

One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated...

Full description

Bibliographic Details
Main Author: Stella, Massimo
Other Authors: Kenett, Yoed N.
Format: eBook
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2022
Subjects:
N/a
Ai
Eeg
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04977nma a2201153 u 4500
001 EB002050883
003 EBX01000000000000001194549
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220822 ||| eng
020 |a 9783036543451 
020 |a 9783036543468 
020 |a books978-3-0365-4346-8 
100 1 |a Stella, Massimo 
245 0 0 |a Knowledge Modelling and Learning through Cognitive Networks  |h Elektronische Ressource 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (240 p.) 
653 |a machine learning 
653 |a automatic relation extraction 
653 |a cognitive science 
653 |a gender stereotypes 
653 |a depression 
653 |a smart assistants 
653 |a working memory 
653 |a biphones 
653 |a n/a 
653 |a analytics 
653 |a lexical representations 
653 |a circular causality 
653 |a cognitive data 
653 |a emotional states 
653 |a emotional recall 
653 |a big data 
653 |a deep learning 
653 |a phonemes 
653 |a semantic network analysis 
653 |a VADER scoring 
653 |a neural networks 
653 |a story tropes 
653 |a review 
653 |a social media 
653 |a brain 
653 |a graph theory 
653 |a activity-dependent resonance states 
653 |a text mining 
653 |a emotional profiling 
653 |a COVID-19 
653 |a network analysis 
653 |a knowledge generation 
653 |a AI 
653 |a prehensile synergies 
653 |a somatosensory representation 
653 |a Information technology industries / bicssc 
653 |a correlation 
653 |a functional plasticity 
653 |a text analysis 
653 |a adolescents 
653 |a sentiment analysis 
653 |a EEG 
653 |a computational philosophy 
653 |a web-based interaction 
653 |a pharmacological text corpus 
653 |a intellectual disability 
653 |a phonotactic probability 
653 |a network science 
653 |a Twitter 
653 |a cognitive network science 
653 |a anxiety 
653 |a sub-lexical representations 
653 |a synaptic learning 
653 |a hashtag networks 
653 |a artificial intelligence 
653 |a classification 
653 |a adaptation 
653 |a self-organization 
653 |a natural language processing 
653 |a intelligent systems 
653 |a web components 
653 |a robotics 
653 |a neighborhood density 
653 |a computational social science 
653 |a cognitive network 
653 |a movie plots 
653 |a word co-occurrence network 
700 1 |a Kenett, Yoed N. 
700 1 |a Stella, Massimo 
700 1 |a Kenett, Yoed N. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
024 8 |a 10.3390/books978-3-0365-4346-8 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/87462  |3 Volltext 
082 0 |a 400 
082 0 |a 000 
082 0 |a 100 
082 0 |a 700 
082 0 |a 600 
082 0 |a 300 
520 |a One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated how memory recall patterns influence phenomena such as creativity, memory search, learning, and more generally, knowledge acquisition, exploration, and exploitation. In parallel, neural network models for artificial intelligence (AI) are also becoming more widespread as inferential models for understanding which features drive language-related phenomena such as meaning reconstruction, stance detection, and emotional profiling. Whereas cognitive networks map explicitly which entities engage in associative relationships, neural networks perform an implicit mapping of correlations in cognitive data as weights, obtained after training over labelled data and whose interpretation is not immediately evident to the experimenter. This book aims to bring together quantitative, innovative research that focuses on modelling knowledge through cognitive and neural networks to gain insight into mechanisms driving cognitive processes related to knowledge structuring, exploration, and learning. The book comprises a variety of publication types, including reviews and theoretical papers, empirical research, computational modelling, and big data analysis. All papers here share a commonality: they demonstrate how the application of network science and AI can extend and broaden cognitive science in ways that traditional approaches cannot.