Shape Memory Alloys 2020

Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative...

Full description

Bibliographic Details
Main Author: Lopez, Gabriel A.
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Sme
N/a
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 03750nma a2200913 u 4500
001 EB002038992
003 EBX01000000000000001182658
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220822 ||| eng
020 |a 9783036524719 
020 |a 9783036524702 
020 |a books978-3-0365-2471-9 
100 1 |a Lopez, Gabriel A. 
245 0 0 |a Shape Memory Alloys 2020  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (154 p.) 
653 |a density control 
653 |a SME 
653 |a Fe-Mn-Al-Ni 
653 |a earthquake engineering 
653 |a elastic constants 
653 |a martensitic transitions 
653 |a pipe joints 
653 |a shape memory alloy 
653 |a n/a 
653 |a resonant ultrasound spectroscopy 
653 |a high-entropy alloys 
653 |a high-temperature shape memory alloys 
653 |a shape memory alloys 
653 |a NiTi 
653 |a intermetallic 
653 |a co-based Heusler alloy 
653 |a laser powder bed fusion 
653 |a structure control 
653 |a phonon softening 
653 |a Technology: general issues / bicssc 
653 |a magnetocaloric effect 
653 |a energy dissipation 
653 |a additive manufacturing 
653 |a multi-component alloys 
653 |a magnetic-field-induced transition 
653 |a EBSD 
653 |a differential scanning calorimetry 
653 |a fatigue test 
653 |a mechanical testing 
653 |a process simulation 
653 |a metamagnetic shape memory alloy 
653 |a metamagnetic shape memory alloys 
653 |a structural defects 
653 |a phase diagram 
653 |a cyclic tests 
653 |a superelasticity 
653 |a lattice structure 
653 |a medium-entropy alloys 
653 |a selective laser melting 
653 |a martensitic transformation 
653 |a X-ray diffraction 
653 |a NiTiNb 
653 |a texture 
653 |a titanium palladium 
653 |a laser-ultrasound 
653 |a microstructure 
653 |a anisotropy 
653 |a titanium platinum 
653 |a cyclic heat treatment 
653 |a mechanical damping 
700 1 |a Lopez, Gabriel A. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-0365-2471-9 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/4571  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/76978  |z DOAB: description of the publication 
082 0 |a 333 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Shape memory alloys (SMAs), in comparison with other materials, have the exceptional ability to change their properties, structure, and functionality depending on the thermal, magnetic, and/or stress fields applied. As is well known, in recent decades, the development of SMAs has allowed innovative solutions and alternatives in biomedical applications and advanced engineering structures for aerospace and automotive industries as well as in sensor and actuation systems, among other sectors. Irrespective of this, designing and engineering using these special smart materials requires a solid background in materials science in order to consolidate their importance in these fields and to broaden their relevance for other new applications. The goal of this Special Issue is to foster the dissemination of some of the latest research devoted to these special materials from different perspectives.