Abstract Fractional Monotone Approximation, Theory and Applications

This book employs an abstract kernel fractional calculus with applications to Prabhakar and non-singular kernel fractional calculi. The results are univariate and bivariate. In the univariate case, abstract fractional monotone approximation by polynomials and splines is presented. In the bivariate c...

Full description

Bibliographic Details
Main Author: Anastassiou, George A.
Format: eBook
Language:English
Published: Cham Springer International Publishing 2022, 2022
Edition:1st ed. 2022
Series:Studies in Systems, Decision and Control
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02144nmm a2200325 u 4500
001 EB002013698
003 EBX01000000000000001176597
005 00000000000000.0
007 cr|||||||||||||||||||||
008 220411 ||| eng
020 |a 9783030959432 
100 1 |a Anastassiou, George A. 
245 0 0 |a Abstract Fractional Monotone Approximation, Theory and Applications  |h Elektronische Ressource  |c by George A. Anastassiou 
250 |a 1st ed. 2022 
260 |a Cham  |b Springer International Publishing  |c 2022, 2022 
300 |a XII, 145 p  |b online resource 
505 0 |a Basic abstract fractional monotone approximation -- Abstract bivariate left fractional monotone constrained approximation by pseudo-polynomials -- Conclusion 
653 |a Engineering mathematics 
653 |a Control and Systems Theory 
653 |a Control engineering 
653 |a Engineering / Data processing 
653 |a Engineering Mathematics 
653 |a Mathematical and Computational Engineering Applications 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Studies in Systems, Decision and Control 
028 5 0 |a 10.1007/978-3-030-95943-2 
856 4 0 |u https://doi.org/10.1007/978-3-030-95943-2?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.00151 
520 |a This book employs an abstract kernel fractional calculus with applications to Prabhakar and non-singular kernel fractional calculi. The results are univariate and bivariate. In the univariate case, abstract fractional monotone approximation by polynomials and splines is presented. In the bivariate case, the abstract fractional monotone constrained approximation by bivariate pseudo-polynomials and polynomials is given. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional approximation and fractional differential equations. Other interesting applications are applied in sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines