Ophthalmic Medical Image Analysis 8th International Workshop, OMIA 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

This book constitutes the refereed proceedings of the 8th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2021, held in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in September 2021.*...

Full description

Bibliographic Details
Other Authors: Fu, Huazhu (Editor), Garvin, Mona K. (Editor), MacGillivray, Tom (Editor), Xu, Yanwu (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2021, 2021
Edition:1st ed. 2021
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 04400nmm a2200421 u 4500
001 EB002002551
003 EBX01000000000000001165452
005 00000000000000.0
007 cr|||||||||||||||||||||
008 211011 ||| eng
020 |a 9783030870003 
100 1 |a Fu, Huazhu  |e [editor] 
245 0 0 |a Ophthalmic Medical Image Analysis  |h Elektronische Ressource  |b 8th International Workshop, OMIA 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings  |c edited by Huazhu Fu, Mona K. Garvin, Tom MacGillivray, Yanwu Xu, Yalin Zheng 
250 |a 1st ed. 2021 
260 |a Cham  |b Springer International Publishing  |c 2021, 2021 
300 |a IX, 200 p. 7 illus  |b online resource 
505 0 |a Adjacent Scale Fusion and Corneal Position Embedding for Corneal Ulcer Segmentation -- Longitudinal detection of diabetic retinopathy early severity grade changes using deep learning -- Intra-operative OCT (iOCT) Image Quality Enhancement: A Super-Resolution Approach using High Quality iOCT 3D Scans -- Diabetic Retinopathy Detection based on Weakly Supervised Object Localization and Knowledge Driven Attribute Mining -- FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images -- CDLRS: Collaborative Deep Learning Model with Joint Regression and Segmentation for Automatic Fovea Localization -- U-Net with Hierarchical Bottleneck Attention for Landmark Detection in Fundus Images of the Degenerated Retina -- Radial U-Net: Improving DMEK Graft Detachment Segmentation in Radial AS-OCT Scans -- Guided Adversarial Adaptation Network for Retinal and Choroidal Layer Segmentation --  
505 0 |a Attention Guided Slit Lamp Image Quality Assessment -- Robust Retinal Vessel Segmentation from a Data Augmentation Perspective 
505 0 |a Juvenile Refractive Power Prediction based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network -- Peripapillary Atrophy Segmentation with Boundary Guidance -- Are cardiovascular risk scores from genome and retinal image complementary? A deep learning investigation in a diabetic cohort -- Dual-branch Attention Network and Atrous Spatial Pyramid Pooling for Diabetic Retinopathy Classification Using Ultra-Widefield Images -- Self-Adaptive Transfer Learning for Multicenter Glaucoma Classification in Fundus Retina Images -- Multi-Modality Images Analysis: A Baseline for Glaucoma Grading via Deep Learning -- Impact of data augmentation on retinal OCT image segmentation for diabetic macular edema analysis -- Representation and Reconstruction of Image-Based Structural Patterns of Glaucomatous Defects Using Only Two Latent Variables from a Variational Autoencoder -- Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic Image Classification --  
653 |a Computer vision 
653 |a Artificial Intelligence 
653 |a Computer Vision 
653 |a Computer networks  
653 |a Computer Engineering and Networks 
653 |a Artificial intelligence 
653 |a Computer engineering 
653 |a Automated Pattern Recognition 
653 |a Pattern recognition systems 
700 1 |a Garvin, Mona K.  |e [editor] 
700 1 |a MacGillivray, Tom  |e [editor] 
700 1 |a Xu, Yanwu  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics 
028 5 0 |a 10.1007/978-3-030-87000-3 
856 4 0 |u https://doi.org/10.1007/978-3-030-87000-3?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 006.37 
520 |a This book constitutes the refereed proceedings of the 8th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2021, held in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in September 2021.* The 20 papers presented at OMIA 2021 were carefully reviewed and selected from 31 submissions. The papers cover various topics in the field of ophthalmic medical image analysis and challenges in terms of reliability and validation, number and type of conditions considered, multi-modal analysis (e.g., fundus, optical coherence tomography, scanning laser ophthalmoscopy), novel imaging technologies, and the effective transfer of advanced computer vision and machine learning technologies. *The workshop was held virtually