Switchmode RF power amplifiers

A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creatin...

Full description

Bibliographic Details
Main Author: Grebennikov, Andrei
Other Authors: Sokal, Nathan O.
Format: eBook
Language:English
Published: Amsterdam Elsevier/Newnes 2007
Series:Communications engineering series
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05634nmm a2200469 u 4500
001 EB001997849
003 EBX01000000000000001160750
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210823 ||| eng
020 |a 9780750679626 
020 |a 075067962X 
020 |a 9780080550640 
050 4 |a TK7871.58.P6 
100 1 |a Grebennikov, Andrei 
245 0 0 |a Switchmode RF power amplifiers  |c Andrei Grebennikov, Nathan O. Sokal 
260 |a Amsterdam  |b Elsevier/Newnes  |c 2007 
300 |a xviii, 424 pages  |b illustrations 
505 0 |a Includes bibliographical references and index 
505 0 |a 3.1 Biharmonic Operation Mode -- 3.2 Idealized Class-F Mode -- 3.3 Class F with Maximally Flat Waveforms -- 3.4 Class F with Quarter-wave Transmission Line -- 3.5 Effect of Saturation Resistance and Shunt Capacitance -- 3.6 Load Networks with Lumped Elements -- 3.7 Load Networks with Transmission Lines -- 3.8 LDMOSFET Power-Amplifier Design Examples -- 3.9 Practical RF and Microwave Class-F Power Amplifiers -- References -- Chapter 4: Inverse Class F -- 4.1 Biharmonic Operation Mode -- 4.2 Idealized Inverse Class-F Mode -- 4.3 Inverse Class F with Quarter-wave Transmission Line -- 4.4 Load Networks with Lumped Elements -- 4.5 Load Networks with Transmission Lines -- 4.6 LDMOSFET Power-Amplifier Design Examples -- 4.7 Practical Implementation -- References -- Chapter 5: Class E with Shunt Capacitance -- 5.1 Effect of Detuned Resonant Circuit -- 5.2 Load Network with Shunt Capacitor and Series Filter -- 5.3 Matching with Standard Load -- 5.4 Effect of Saturation Resistance --  
505 0 |a Cover -- Table of Contents -- About Andrei Grebennikov -- About Nathan O. Sokal -- Preface -- Acknowledgments -- Chapter 1: Power-Amplifier Design Principles -- 1.1 Spectral-Domain Analysis -- 1.2 Basic Classes of Operation: A, AB, B, and C -- 1.3 Active Device Models -- 1.4 High-Frequency Conduction Angle -- 1.5 Nonlinear Effect of Collector Capacitance -- 1.6 Push-Pull Power Amplifiers -- 1.7 Power Gain and Stability -- 1.8 Parametric Oscillations -- References -- Chapter 2: Class-D Power Amplifiers -- 2.1 Switched-Mode Power Amplifiers with Resistive Load -- 2.2 Complementary Voltage-Switching Configuration -- 2.3 Transformer-Coupled Voltage-Switching Configuration -- 2.4 Symmetrical Current-Switching Configuration -- 2.5 Transformer-Coupled Current-Switching Configuration -- 2.6 Voltage-Switching Configuration with Reactive Load -- 2.7 Drive and Transition Time -- 2.8 Practical Class-D Power Amplifier Implementation -- References -- Chapter 3: Class-F Power Amplifiers --  
505 0 |a 5.5 Driving Signal and Finite Switching Time -- 5.6 Effect of Nonlinear Shunt Capacitance -- 5.7 Push-Pull Operation Mode -- 5.8 Load Network with Transmission Lines -- 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications -- References -- Chapter 6: Class E with Finite dc-Feed Inductance -- 6.1 Class E with One Capacitor and One Inductor -- 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance -- 6.3 Subharmonic Class E -- 6.4 Parallel-Circuit Class E -- 6.5 Even-Harmonic Class E -- 6.6 Effect of Bondwire Inductance -- 6.7 Load Network with Transmission Lines -- 6.8 Broadband Class E -- 6.9 Power Gain -- 6.10 CMOS Class-E Power Amplifiers -- References -- Chapter 7: Class E with Quarter-wave Transmission Line -- 7.1 Load Network with Parallel Quarter-wave Line -- 7.2 Optimum Load Network Parameters -- 7.3 Load Network with Zero Series Reactance -- 7.4 Matching Circuit with Lumped Elements -- 7.5 Matching Circui 
653 |a Power amplifiers / http://id.loc.gov/authorities/subjects/sh85105977 
653 |a Microwave amplifiers / http://id.loc.gov/authorities/subjects/sh85084952 
653 |a TECHNOLOGY & ENGINEERING / Electronics / Circuits / Integrated / bisacsh 
653 |a Amplificateurs micro-ondes 
653 |a Power amplifiers / fast 
653 |a Microwave amplifiers / fast 
653 |a Amplificateurs de puissance 
653 |a TECHNOLOGY & ENGINEERING / Electronics / Circuits / General / bisacsh 
700 1 |a Sokal, Nathan O. 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
490 0 |a Communications engineering series 
015 |a GBA743244 
776 |z 0080550649 
776 |z 9780080550640 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780750679626/?ar  |x Verlag  |3 Volltext 
082 0 |a 621.381 
082 0 |a 621.3815/35 
082 0 |a 620 
520 |a A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creating a wider area of use with a more robust signal. Switching mode RF amplifiers have been theoretically possible for decades, but were largely impractical because they distort analog signals until they are unrecognizable. However, distortion is not an issue with digital signalslike those used by WLANs and digital cell phonesand switching mode RF amplifiers have become a hot area of RF/wireless design. This book explores both the theory behind switching mode RF amplifiers and design techniques for them. *Provides essential design and implementation techniques for use in cma2000, WiMAX, and other digital mobile standards *Both authors have written several articles on the topic and are well known in the industry *Includes specific design equations to greatly simplify the design of switchmode amplifiers