|
|
|
|
LEADER |
05841nma a2201597 u 4500 |
001 |
EB001992599 |
003 |
EBX01000000000000001155501 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
210512 ||| eng |
020 |
|
|
|a 9783039432394
|
020 |
|
|
|a books978-3-03943-239-4
|
020 |
|
|
|a 9783039432387
|
100 |
1 |
|
|a Hori, Kiyosumi
|
245 |
0 |
0 |
|a Molecular Research in Rice
|h Elektronische Ressource
|b Agronomically Important Traits
|
260 |
|
|
|a Basel, Switzerland
|b MDPI - Multidisciplinary Digital Publishing Institute
|c 2020
|
300 |
|
|
|a 1 electronic resource (378 p.)
|
653 |
|
|
|a off-target effect
|
653 |
|
|
|a phenolic metabolism
|
653 |
|
|
|a transcriptome analysis
|
653 |
|
|
|a tiller number
|
653 |
|
|
|a NMR
|
653 |
|
|
|a receptor-like cytoplasmic kinase (RLCK)
|
653 |
|
|
|a osmotic stress
|
653 |
|
|
|a qRT-PCR
|
653 |
|
|
|a dwarfism
|
653 |
|
|
|a foreground selection
|
653 |
|
|
|a heterosis
|
653 |
|
|
|a chilling stress
|
653 |
|
|
|a linkage mapping
|
653 |
|
|
|a seed dormancy
|
653 |
|
|
|a leaf senescence
|
653 |
|
|
|a dry season
|
653 |
|
|
|a Kjeldahl nitrogen determination
|
653 |
|
|
|a chloroplast biogenesis
|
653 |
|
|
|a Oryza sativa L.
|
653 |
|
|
|a marker-assisted selection
|
653 |
|
|
|a genetic variation
|
653 |
|
|
|a japonica rice
|
653 |
|
|
|a chromosome segment substitution lines
|
653 |
|
|
|a lamina joint
|
653 |
|
|
|a wet season
|
653 |
|
|
|a Insertion/Deletion (InDel) markers
|
653 |
|
|
|a specific length amplified fragment sequencing
|
653 |
|
|
|a Research & information: general / bicssc
|
653 |
|
|
|a combined stress
|
653 |
|
|
|a epidermal characteristics
|
653 |
|
|
|a Biology, life sciences / bicssc
|
653 |
|
|
|a multi-gene allele contributions
|
653 |
|
|
|a high-density linkage map
|
653 |
|
|
|a tiller
|
653 |
|
|
|a ABA
|
653 |
|
|
|a transgenic
|
653 |
|
|
|a bHLH transcription factor
|
653 |
|
|
|a leaf angle
|
653 |
|
|
|a salinity
|
653 |
|
|
|a rice germplasm
|
653 |
|
|
|a quantitative trait loci
|
653 |
|
|
|a seed germination
|
653 |
|
|
|a haplotype
|
653 |
|
|
|a rice
|
653 |
|
|
|a Oryza sativa (rice)
|
653 |
|
|
|a epigenetic
|
653 |
|
|
|a nitrogen rate
|
653 |
|
|
|a reactive oxygen species (ROS)
|
653 |
|
|
|a high-throughput sequence
|
653 |
|
|
|a CIPKs genes
|
653 |
|
|
|a Pyricularia oryzae (formerly Magnaporthe oryzae)
|
653 |
|
|
|a single nucleotide polymorphism
|
653 |
|
|
|a grain yield
|
653 |
|
|
|a transcriptomic analysis
|
653 |
|
|
|a genome editing
|
653 |
|
|
|a metabolomics
|
653 |
|
|
|a QTLs
|
653 |
|
|
|a partial resistance
|
653 |
|
|
|a global methylation
|
653 |
|
|
|a transcriptome
|
653 |
|
|
|a shoot apical meristem
|
653 |
|
|
|a germinability
|
653 |
|
|
|a fatty acid
|
653 |
|
|
|a intron splicing
|
653 |
|
|
|a n/a
|
653 |
|
|
|a brassinosteroid signaling
|
653 |
|
|
|a phenotype
|
653 |
|
|
|a co-expression network
|
653 |
|
|
|a disease resistance
|
653 |
|
|
|a rice (Oryza sativa)
|
653 |
|
|
|a CRISPR/Cas9
|
653 |
|
|
|a yield components
|
653 |
|
|
|a near infrared reflectance spectroscopy
|
653 |
|
|
|a pi21
|
653 |
|
|
|a chloroplast RNA splicing and ribosome maturation (CRM) domain
|
653 |
|
|
|a background selection
|
653 |
|
|
|a OsCYP96B4
|
653 |
|
|
|a FW2.2-like gene
|
653 |
|
|
|a long grain
|
653 |
|
|
|a grain protein content
|
653 |
|
|
|a AAA-ATPase
|
653 |
|
|
|a blast disease
|
653 |
|
|
|a quantitative trait locus
|
653 |
|
|
|a pyramiding
|
653 |
|
|
|a chloroplast development
|
653 |
|
|
|a anthesis
|
653 |
|
|
|a high night temperature
|
653 |
|
|
|a rice (Oryza sativa L.)
|
653 |
|
|
|a GABA
|
653 |
|
|
|a microbe-associated molecular pattern (MAMP)
|
653 |
|
|
|a cold stress
|
653 |
|
|
|a Magnaporthe oryzae
|
653 |
|
|
|a salicylic acid
|
653 |
|
|
|a genetic
|
653 |
|
|
|a residual heterozygote
|
653 |
|
|
|a rice (Oryza sativa L.), grain size and weight
|
653 |
|
|
|a chlorophyll biosynthesis
|
653 |
|
|
|a bacterial blight
|
653 |
|
|
|a OsNAR2.1
|
653 |
|
|
|a anther
|
653 |
|
|
|a heat stress
|
653 |
|
|
|a Technology, engineering, agriculture / bicssc
|
700 |
1 |
|
|a Shenton, Matthew
|
700 |
1 |
|
|a Hori, Kiyosumi
|
700 |
1 |
|
|a Shenton, Matthew
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/
|
028 |
5 |
0 |
|a 10.3390/books978-3-03943-239-4
|
856 |
4 |
2 |
|u https://directory.doabooks.org/handle/20.500.12854/69169
|z DOAB: description of the publication
|
856 |
4 |
0 |
|u https://www.mdpi.com/books/pdfview/book/2941
|7 0
|x Verlag
|3 Volltext
|
082 |
0 |
|
|a 000
|
082 |
0 |
|
|a 630
|
082 |
0 |
|
|a 610
|
082 |
0 |
|
|a 333
|
082 |
0 |
|
|a 700
|
082 |
0 |
|
|a 600
|
082 |
0 |
|
|a 620
|
520 |
|
|
|a This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world's population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.
|