Short-Term Load Forecasting 2019

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these...

Full description

Bibliographic Details
Main Author: Gabaldón, Antonio
Other Authors: Ruiz-Abellón, Dr. María Carmen, Fernández-Jiménez, Luis Alfredo
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Dbn
Psr
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04869nma a2201045 u 4500
001 EB001991946
003 EBX01000000000000001154848
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039434435 
020 |a 9783039434428 
020 |a books978-3-03943-443-5 
100 1 |a Gabaldón, Antonio 
245 0 0 |a Short-Term Load Forecasting 2019  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (324 p.) 
653 |a special days 
653 |a DBN 
653 |a random forest 
653 |a forecasting 
653 |a bus load forecasting 
653 |a short-term load forecasting 
653 |a data augmentation 
653 |a feature selection 
653 |a deep learning 
653 |a electricity consumption 
653 |a residential load forecasting 
653 |a regressive models 
653 |a time series 
653 |a History of engineering and technology / bicssc 
653 |a wavenet 
653 |a seasonal patterns 
653 |a multivariate random forests 
653 |a PSR 
653 |a hybrid energy system 
653 |a prosumers 
653 |a feature extraction 
653 |a Load forecasting 
653 |a Nordic electricity market 
653 |a performance criteria 
653 |a cubic splines 
653 |a weather station selection 
653 |a building electric energy consumption forecasting 
653 |a load forecasting 
653 |a transfer learning 
653 |a convolution neural network 
653 |a combined model 
653 |a multiobjective optimization algorithm 
653 |a component estimation method 
653 |a load metering 
653 |a electricity 
653 |a Tikhonov regularization 
653 |a day ahead 
653 |a demand response 
653 |a lasso 
653 |a data preprocessing technique 
653 |a multiple sources 
653 |a modeling and forecasting 
653 |a VSTLF 
653 |a univariate and multivariate time series analysis 
653 |a deep residual neural network 
653 |a electric load forecasting 
653 |a hierarchical short-term load forecasting 
653 |a long short-term memory 
653 |a electricity demand 
653 |a pattern similarity 
653 |a cost analysis 
653 |a preliminary load 
653 |a power systems 
653 |a real-time electricity load 
653 |a distributed energy resources 
653 |a cold-start problem 
653 |a demand-side management 
653 |a short term load forecasting 
700 1 |a Ruiz-Abellón, Dr. María Carmen 
700 1 |a Fernández-Jiménez, Luis Alfredo 
700 1 |a Gabaldón, Antonio 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-03943-443-5 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/68414  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/3430  |7 0  |x Verlag  |3 Volltext 
082 0 |a 900 
082 0 |a 333 
082 0 |a 700 
082 0 |a 600 
082 0 |a 620 
520 |a Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030-50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.