Hyperspectral Remote Sensing of Agriculture and Vegetation

This book shows recent and innovative applications of the use of hyperspectral technology for optimal quantification of crop, vegetation, and soil biophysical variables at various spatial scales, which can be an important aspect in agricultural management practices and monitoring. The articles colle...

Full description

Bibliographic Details
Main Author: Pascucci, Simone
Other Authors: Pignatti, Stefano, Casa, Raffaele, Darvishzadeh, Roshanak
Format: eBook
Language:English
Published: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2021
Subjects:
Pls
Mlr
Svm
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04615nma a2201213 u 4500
001 EB001991621
003 EBX01000000000000001154523
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039439072 
020 |a 9783039439089 
020 |a books978-3-03943-908-9 
100 1 |a Pascucci, Simone 
245 0 0 |a Hyperspectral Remote Sensing of Agriculture and Vegetation  |h Elektronische Ressource 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (266 p.) 
653 |a peanut 
653 |a leaf chlorophyll content 
653 |a multi-angle observation 
653 |a platforms and sensors 
653 |a hyperspectral LiDAR 
653 |a BRDF 
653 |a hyperspectral imaging for vegetation 
653 |a hyperspectral 
653 |a proximal sensor 
653 |a feature selection 
653 |a micronutrient 
653 |a Eragrostis tef 
653 |a vegetation 
653 |a proximal sensing data 
653 |a invasive species 
653 |a PLS 
653 |a vegetation classification 
653 |a expansive species 
653 |a hyperspectral imaging 
653 |a Research & information: general / bicssc 
653 |a MLR 
653 |a product validation 
653 |a waveband selection 
653 |a support vector machine 
653 |a soil characteristics 
653 |a Environmental economics / bicssc 
653 |a adaxial 
653 |a grapevine 
653 |a new hyperspectral technologies 
653 |a plant traits 
653 |a replicability 
653 |a spectroscopy 
653 |a chlorophyll content 
653 |a spectral reflectance 
653 |a hyperspectral databases for agricultural soils and vegetation 
653 |a canopy spectra 
653 |a crop properties 
653 |a field spectroscopy 
653 |a precision agriculture 
653 |a random forest 
653 |a partial least square regression (PLSR) 
653 |a discrimination 
653 |a correlation coefficient 
653 |a Ethiopia 
653 |a Natura 2000 
653 |a plant 
653 |a MDATT 
653 |a partial least squares 
653 |a DLARI 
653 |a high-resolution spectroscopy for agricultural soils and vegetation 
653 |a hyperspectral remote sensing 
653 |a spectra 
653 |a continuous wavelet transform (CWT) 
653 |a abaxial 
653 |a object-oriented segmentation 
653 |a vegetation parameters 
653 |a hyperspectral remote sensing for soil and crops in agriculture 
653 |a analytical methods 
653 |a future hyperspectral missions 
653 |a reproducibility 
653 |a Red Edge 
653 |a AOTF 
653 |a hyperspectral data as input for modelling soil, crop, and vegetation 
653 |a remote sensing 
653 |a classification of agricultural features 
653 |a heavy metals 
653 |a SVM 
653 |a biodiversity 
653 |a artificial intelligence 
653 |a classification 
653 |a macronutrient 
700 1 |a Pignatti, Stefano 
700 1 |a Casa, Raffaele 
700 1 |a Darvishzadeh, Roshanak 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by/4.0/ 
028 5 0 |a 10.3390/books978-3-03943-908-9 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/68321  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/3331  |7 0  |x Verlag  |3 Volltext 
082 0 |a 363 
082 0 |a 000 
082 0 |a 330 
082 0 |a 630 
082 0 |a 580 
082 0 |a 700 
520 |a This book shows recent and innovative applications of the use of hyperspectral technology for optimal quantification of crop, vegetation, and soil biophysical variables at various spatial scales, which can be an important aspect in agricultural management practices and monitoring. The articles collected inside the book are intended to help researchers and farmers involved in precision agriculture techniques and practices, as well as in plant nutrient prediction, to a higher comprehension of strengths and limitations of the application of hyperspectral imaging to agriculture and vegetation. Hyperspectral remote sensing for studying agriculture and natural vegetation is a challenging research topic that will remain of great interest for different sciences communities in decades.