|
|
|
|
LEADER |
09208nma a2202857 u 4500 |
001 |
EB001984240 |
003 |
EBX01000000000000001147142 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
210512 ||| eng |
020 |
|
|
|a 9783039283026
|
020 |
|
|
|a 9783039283033
|
020 |
|
|
|a books978-3-03928-303-3
|
100 |
1 |
|
|a Gao, Yuan
|
245 |
0 |
0 |
|a Multi-Sensor Information Fusion
|h Elektronische Ressource
|
260 |
|
|
|b MDPI - Multidisciplinary Digital Publishing Institute
|c 2020
|
300 |
|
|
|a 1 electronic resource (602 p.)
|
653 |
|
|
|a data fusion architectures
|
653 |
|
|
|a multi-sensor information fusion
|
653 |
|
|
|a domain adaption
|
653 |
|
|
|a user experience evaluation
|
653 |
|
|
|a augmented state Kalman filtering (ASKF)
|
653 |
|
|
|a sonar network
|
653 |
|
|
|a Bar-Shalom Campo
|
653 |
|
|
|a network flow theory
|
653 |
|
|
|a fuzzy neural network
|
653 |
|
|
|a Industry 4.0
|
653 |
|
|
|a workload
|
653 |
|
|
|a quaternion
|
653 |
|
|
|a belief functions
|
653 |
|
|
|a belief entropy
|
653 |
|
|
|a Dempster-Shafer evidence theory (DST)
|
653 |
|
|
|a unmanned aerial vehicle
|
653 |
|
|
|a optimal estimate
|
653 |
|
|
|a high-dimensional fusion data (HFD)
|
653 |
|
|
|a manifold
|
653 |
|
|
|a dual gating
|
653 |
|
|
|a galvanic skin response
|
653 |
|
|
|a data fusion
|
653 |
|
|
|a mix-method approach
|
653 |
|
|
|a deep learning
|
653 |
|
|
|a adaptive distance function
|
653 |
|
|
|a user experience measurement
|
653 |
|
|
|a vehicular localization
|
653 |
|
|
|a security zones
|
653 |
|
|
|a acoustic emission
|
653 |
|
|
|a multirotor UAV
|
653 |
|
|
|a uncertainty
|
653 |
|
|
|a facial expression
|
653 |
|
|
|a artificial marker
|
653 |
|
|
|a open world
|
653 |
|
|
|a Hellinger distance
|
653 |
|
|
|a plane matching
|
653 |
|
|
|a image registration
|
653 |
|
|
|a multi-sensor system
|
653 |
|
|
|a sensors bias
|
653 |
|
|
|a orthogonal redundant inertial measurement units
|
653 |
|
|
|a attitude
|
653 |
|
|
|a multisensor system
|
653 |
|
|
|a RTS smoother
|
653 |
|
|
|a interference suppression
|
653 |
|
|
|a multi-sensor time series
|
653 |
|
|
|a square root
|
653 |
|
|
|a intelligent and connected vehicles
|
653 |
|
|
|a state estimation
|
653 |
|
|
|a convergence condition
|
653 |
|
|
|a networked systems
|
653 |
|
|
|a drift compensation
|
653 |
|
|
|a Pignistic vector angle
|
653 |
|
|
|a sensor array
|
653 |
|
|
|a packet dropouts
|
653 |
|
|
|a dynamic optimization
|
653 |
|
|
|a image fusion
|
653 |
|
|
|a powered two wheels (PTW)
|
653 |
|
|
|a health reliability degree
|
653 |
|
|
|a land vehicle
|
653 |
|
|
|a sensor fusion
|
653 |
|
|
|a SLAM
|
653 |
|
|
|a multi-sensor joint calibration
|
653 |
|
|
|a vibration
|
653 |
|
|
|a state probability approximation
|
653 |
|
|
|a random finite set
|
653 |
|
|
|a pose estimation
|
653 |
|
|
|a observable degree analysis
|
653 |
|
|
|a eye-tracking
|
653 |
|
|
|a decision-level sensor fusion
|
653 |
|
|
|a Gaussian density peak clustering
|
653 |
|
|
|a inconsistent data
|
653 |
|
|
|a Kalman filter
|
653 |
|
|
|a electronic nose
|
653 |
|
|
|a aircraft pilot
|
653 |
|
|
|a fault diagnosis
|
653 |
|
|
|a gradient domain
|
653 |
|
|
|a low-cost sensors
|
653 |
|
|
|a soft sensor
|
653 |
|
|
|a random parameter matrices
|
653 |
|
|
|a evidential reasoning
|
653 |
|
|
|a spatiotemporal feature learning
|
653 |
|
|
|a yaw estimation
|
653 |
|
|
|a health management decision
|
653 |
|
|
|a grey group decision-making
|
653 |
|
|
|a global information
|
653 |
|
|
|a conflict measurement
|
653 |
|
|
|a gaussian mixture probability hypothesis density
|
653 |
|
|
|a signal feature extraction methods
|
653 |
|
|
|a nonlinear system
|
653 |
|
|
|a projection
|
653 |
|
|
|a cutting forces
|
653 |
|
|
|a predictive modeling techniques
|
653 |
|
|
|a spectral clustering
|
653 |
|
|
|a DoS attack
|
653 |
|
|
|a machine health monitoring
|
653 |
|
|
|a Gaussian mixture model (GMM)
|
653 |
|
|
|a sensor fusing
|
653 |
|
|
|a surface modelling
|
653 |
|
|
|a camera
|
653 |
|
|
|a conflicting evidence
|
653 |
|
|
|a coefficient of determination maximization strategy
|
653 |
|
|
|a weighted fusion estimation
|
653 |
|
|
|a unscented information filter
|
653 |
|
|
|a the Range-Point-Range frame
|
653 |
|
|
|a data association
|
653 |
|
|
|a particle swarm optimization
|
653 |
|
|
|a vehicle-to-everything
|
653 |
|
|
|a industrial cyber-physical system (ICPS)
|
653 |
|
|
|a A* search algorithm
|
653 |
|
|
|a Internet of things (IoT)
|
653 |
|
|
|a feature representations
|
653 |
|
|
|a unknown inputs
|
653 |
|
|
|a fire source localization
|
653 |
|
|
|a multi-source data fusion
|
653 |
|
|
|a Dempster–Shafer evidence theory
|
653 |
|
|
|a multi-target tracking
|
653 |
|
|
|a square-root cubature Kalman filter
|
653 |
|
|
|a sematic segmentation
|
653 |
|
|
|a sensor data fusion algorithm
|
653 |
|
|
|a distributed intelligence system
|
653 |
|
|
|a Covariance Projection method
|
653 |
|
|
|a Deng entropy
|
653 |
|
|
|a calibration
|
653 |
|
|
|a transfer
|
653 |
|
|
|a distributed fusion
|
653 |
|
|
|a object classification
|
653 |
|
|
|a covariance matrix
|
653 |
|
|
|a linear regression
|
653 |
|
|
|a orientation
|
653 |
|
|
|a multi-sensor data fusion
|
653 |
|
|
|a surface quality control
|
653 |
|
|
|a weight maps
|
653 |
|
|
|a non-rigid feature matching
|
653 |
|
|
|a precision landing
|
653 |
|
|
|a mutual support degree
|
653 |
|
|
|a intelligent transport system
|
653 |
|
|
|a embedded systems
|
653 |
|
|
|a complex surface measurement
|
653 |
|
|
|a ICP
|
653 |
|
|
|a Gaussian process
|
653 |
|
|
|a similarity measure
|
653 |
|
|
|a Gaussian process model
|
653 |
|
|
|a self-reporting
|
653 |
|
|
|a data registration
|
653 |
|
|
|a closed world
|
653 |
|
|
|a maintenance decision
|
653 |
|
|
|a nested iterative method
|
653 |
|
|
|a out-of-sequence
|
653 |
|
|
|a magnetic angular rate and gravity (MARG) sensor
|
653 |
|
|
|a Surface measurement
|
653 |
|
|
|a principal component analysis
|
653 |
|
|
|a least-squares smoothing
|
653 |
|
|
|a data classification
|
653 |
|
|
|a hybrid adaptive filtering
|
653 |
|
|
|a trajectory reconstruction
|
653 |
|
|
|a multitarget tracking
|
653 |
|
|
|a expectation maximization (EM) algorithm
|
653 |
|
|
|a MEMS accelerometer and gyroscope
|
653 |
|
|
|a supervoxel
|
653 |
|
|
|a uncertainty measure
|
653 |
|
|
|a fixed-point filter
|
653 |
|
|
|a integer programming
|
653 |
|
|
|a most suitable parameter form
|
653 |
|
|
|a SINS/DVL integrated navigation
|
653 |
|
|
|a subspace alignment
|
653 |
|
|
|a multi-sensor measurement
|
653 |
|
|
|a multisensor data fusion
|
653 |
|
|
|a EEG
|
653 |
|
|
|a local structure descriptor
|
653 |
|
|
|a multi-sensor network
|
653 |
|
|
|a GMPHD
|
653 |
|
|
|a time-distributed ConvLSTM model
|
653 |
|
|
|a mimicry security switch strategy
|
653 |
|
|
|a Gaussian process regression
|
653 |
|
|
|a linear constraints
|
653 |
|
|
|a the Range-Range-Range frame
|
653 |
|
|
|a high-definition map
|
653 |
|
|
|a extended Kalman filter
|
653 |
|
|
|a LiDAR
|
653 |
|
|
|a information filter
|
653 |
|
|
|a sensor system
|
653 |
|
|
|a Bayesian reasoning method
|
653 |
|
|
|a Steffensen’s iterative method
|
653 |
|
|
|a target positioning
|
653 |
|
|
|a estimation
|
653 |
|
|
|a user experience platform
|
653 |
|
|
|a multi-focus
|
653 |
|
|
|a Dempster–Shafer evidence theory (DST)
|
653 |
|
|
|a novel belief entropy
|
653 |
|
|
|a time-domain data fusion
|
653 |
|
|
|a safe trajectory
|
653 |
|
|
|a extended belief entropy
|
653 |
|
|
|a data preprocessing
|
653 |
|
|
|a random delays
|
653 |
|
|
|a RFS
|
653 |
|
|
|a Gaussian mixture model
|
653 |
|
|
|a multi-environments
|
653 |
|
|
|a distributed architecture
|
653 |
|
|
|a information fusion
|
653 |
|
|
|a alumina concentration
|
653 |
|
|
|a interaction tracker
|
653 |
|
|
|a attitude estimation
|
653 |
|
|
|a cardiac PET
|
653 |
|
|
|a Human Activity Recognition (HAR)
|
653 |
|
|
|a fast guided filter.
|
653 |
|
|
|a parameter learning
|
653 |
|
|
|a least-squares filtering
|
653 |
|
|
|a evidence combination
|
653 |
|
|
|a sensor data fusion
|
700 |
1 |
|
|a Jin, Xue-Bo
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/
|
024 |
8 |
|
|a 10.3390/books978-3-03928-303-3
|
856 |
4 |
0 |
|u https://directory.doabooks.org/handle/20.500.12854/54050
|3 Volltext
|
082 |
0 |
|
|a 720
|
082 |
0 |
|
|a 363
|
082 |
0 |
|
|a 000
|
082 |
0 |
|
|a 330
|
082 |
0 |
|
|a 610
|
082 |
0 |
|
|a 140
|
082 |
0 |
|
|a 380
|
082 |
0 |
|
|a 700
|
520 |
|
|
|a This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
|