Intelligent Optimization Modelling in Energy Forecasting

Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent de...

Full description

Bibliographic Details
Main Author: Hong, Wei-Chiang
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04999nma a2201009 u 4500
001 EB001981115
003 EBX01000000000000001144017
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039283651 
020 |a books978-3-03928-365-1 
020 |a 9783039283644 
100 1 |a Hong, Wei-Chiang 
245 0 0 |a Intelligent Optimization Modelling in Energy Forecasting  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (262 p.) 
653 |a sparse Bayesian learning (SBL) 
653 |a active investment 
653 |a substation project cost forecasting model 
653 |a electrical power load 
653 |a kernel learning 
653 |a state transition algorithm 
653 |a crude oil prices 
653 |a energy forecasting 
653 |a institutional investors 
653 |a multi-objective grey wolf optimizer 
653 |a Markov-switching 
653 |a forecasting 
653 |a artificial intelligence techniques 
653 |a data inconsistency rate 
653 |a short-term load forecasting 
653 |a feature selection 
653 |a LEM2 
653 |a diversification 
653 |a empirical mode decomposition (EMD) 
653 |a crude oil price forecasting 
653 |a combination forecasting 
653 |a asset management 
653 |a Gaussian processes regression 
653 |a complementary ensemble empirical mode decomposition (CEEMD) 
653 |a General Regression Neural Network 
653 |a portfolio management 
653 |a interpolation 
653 |a Markov-switching GARCH 
653 |a Ensemble Empirical Mode Decomposition 
653 |a weighted k-nearest neighbor (W-K-NN) algorithm 
653 |a fuzzy time series 
653 |a Brain Storm Optimization 
653 |a renewable energy consumption 
653 |a particle swarm optimization (PSO) algorithm 
653 |a five-year project 
653 |a metamodel 
653 |a deep convolutional neural network 
653 |a support vector regression (SVR) 
653 |a kernel ridge regression 
653 |a Computer science / bicssc 
653 |a ensemble 
653 |a intrinsic mode function (IMF) 
653 |a regression 
653 |a individual 
653 |a energy price hedging 
653 |a long short-term memory 
653 |a commodities 
653 |a improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 
653 |a comparative analysis 
653 |a condition-based maintenance 
653 |a wind speed 
653 |a multi-step wind speed prediction 
653 |a time series forecasting 
653 |a Long Short Term Memory 
653 |a energy futures 
653 |a short term load forecasting 
653 |a differential evolution (DE) 
653 |a modified fruit fly optimization algorithm 
653 |a hybrid model 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
028 5 0 |a 10.3390/books978-3-03928-365-1 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/50434  |z DOAB: description of the publication 
856 4 0 |u https://www.mdpi.com/books/pdfview/book/2147  |7 0  |x Verlag  |3 Volltext 
082 0 |a 000 
082 0 |a 576 
082 0 |a 333 
082 0 |a 700 
520 |a Accurate energy forecasting is important to facilitate the decision-making process in order to achieve higher efficiency and reliability in power system operation and security, economic energy use, contingency scheduling, the planning and maintenance of energy supply systems, and so on. In recent decades, many energy forecasting models have been continuously proposed to improve forecasting accuracy, including traditional statistical models (e.g., ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman filtering, Bayesian estimation models, etc.) and artificial intelligence models (e.g., artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation models, support vector regression, etc.). Recently, due to the great development of optimization modeling methods (e.g., quadratic programming method, differential empirical mode method, evolutionary algorithms, meta-heuristic algorithms, etc.) and intelligent computing mechanisms (e.g., quantum computing, chaotic mapping, cloud mapping, seasonal mechanism, etc.), many novel hybrid models or models combined with the above-mentioned intelligent-optimization-based models have also been proposed to achieve satisfactory forecasting accuracy levels. It is important to explore the tendency and development of intelligent-optimization-based modeling methodologies and to enrich their practical performances, particularly for marine renewable energy forecasting.