Geometrie und Topologie von Trajektorienoptimierung für vollautomatisches Fahren

In order to establish general principles in the topic of motion planning for fully-automated driving, an intuitive problem statement in the form of an Euler-Lagrange Model is derived and transformed into a corresponding Hidden Markov Model for global optimization. Geometric and topologic considerati...

Full description

Bibliographic Details
Main Author: Ruf, Miriam
Format: eBook
Published: KIT Scientific Publishing 2018
Series:Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 01954nma a2200373 u 4500
001 EB001980678
003 EBX01000000000000001143580
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| deu
020 |a 9783731508328 
020 |a 1000085281 
100 1 |a Ruf, Miriam 
245 0 0 |a Geometrie und Topologie von Trajektorienoptimierung für vollautomatisches Fahren  |h Elektronische Ressource 
260 |b KIT Scientific Publishing  |c 2018 
300 |a 1 electronic resource (XVII, 253 p. p.) 
653 |a maneuver planning 
653 |a probabilistic environment modelling 
653 |a SPARC 
653 |a probabilistische Umweltmodellierung 
653 |a Manöverplanung 
653 |a automatisiertes Fahren 
653 |a optimization 
653 |a automated driving 
653 |a Optimierung 
041 0 7 |a deu  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
490 0 |a Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-sa/4.0/ 
028 5 0 |a 10.5445/KSP/1000085281 
856 4 0 |u https://www.ksp.kit.edu/9783731508328  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/48490  |z DOAB: description of the publication 
082 0 |a 363 
520 |a In order to establish general principles in the topic of motion planning for fully-automated driving, an intuitive problem statement in the form of an Euler-Lagrange Model is derived and transformed into a corresponding Hidden Markov Model for global optimization. Geometric and topologic considerations lead to a probabilistic environment modelling in combination with the C² model and result in general conclusions about the structure of traffic situations.