Artificial Intelligence for Smart and Sustainable Energy Systems and Applications

Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy researc...

Full description

Bibliographic Details
Main Author: Lytras, Miltiadis
Other Authors: Chui, Kwok Tai
Format: eBook
Language:English
Published: MDPI - Multidisciplinary Digital Publishing Institute 2020
Subjects:
Rpn
Lr
Elr
Cnn
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 04061nma a2201057 u 4500
001 EB001974673
003 EBX01000000000000001137575
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 9783039288908 
020 |a 9783039288892 
020 |a books978-3-03928-890-8 
100 1 |a Lytras, Miltiadis 
245 0 0 |a Artificial Intelligence for Smart and Sustainable Energy Systems and Applications  |h Elektronische Ressource 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (258 p.) 
653 |a machine learning 
653 |a smart grids 
653 |a optimization algorithms 
653 |a forecasting 
653 |a static young’s modulus 
653 |a genetic algorithm 
653 |a RPN 
653 |a smart villages 
653 |a scheduling 
653 |a multiple kernel learning 
653 |a NILM 
653 |a smart metering 
653 |a drill-in fluid 
653 |a deep learning 
653 |a policy making 
653 |a LSTM 
653 |a smart city 
653 |a self-adaptive differential evolution algorithm 
653 |a insulator 
653 |a LR 
653 |a feature extraction 
653 |a smart cities 
653 |a mud rheology 
653 |a artificial neural network 
653 |a ELR 
653 |a ERELM 
653 |a yield point 
653 |a sandstone reservoirs 
653 |a object detection 
653 |a non-intrusive load monitoring 
653 |a Faster R-CNN 
653 |a Jetson TX2 
653 |a wireless sensor networks 
653 |a nonintrusive load monitoring 
653 |a sensor network 
653 |a load 
653 |a MCP39F511 
653 |a transient signature 
653 |a energy disaggregation 
653 |a demand response 
653 |a home energy management systems 
653 |a energy management 
653 |a demand side management 
653 |a smart grid 
653 |a support vector machine 
653 |a energy 
653 |a energy efficient coverage 
653 |a CNN 
653 |a internet of things 
653 |a ambient assisted living 
653 |a RELM 
653 |a artificial intelligence 
653 |a home energy management 
653 |a computational intelligence 
653 |a decision tree 
653 |a distributed genetic algorithm 
653 |a load disaggregation 
653 |a plastic viscosity 
653 |a artificial neural networks 
653 |a conditional random fields 
653 |a Marsh funnel 
653 |a price 
653 |a sustainable development 
700 1 |a Chui, Kwok Tai 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/ 
024 8 |a 10.3390/books978-3-03928-890-8 
856 4 0 |u https://directory.doabooks.org/handle/20.500.12854/41352  |3 Volltext 
082 0 |a 000 
082 0 |a 576 
082 0 |a 333 
082 0 |a 700 
520 |a Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.