|
|
|
|
LEADER |
12094nma a2203805 u 4500 |
001 |
EB001971043 |
003 |
EBX01000000000000001133945 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
210512 ||| eng |
020 |
|
|
|a books978-3-03921-947-6
|
020 |
|
|
|a 9783039219476
|
020 |
|
|
|a 9783039219469
|
100 |
1 |
|
|a Kim, DaeEun
|
245 |
0 |
0 |
|a Advanced Mobile Robotics: Volume 3
|h Elektronische Ressource
|
260 |
|
|
|b MDPI - Multidisciplinary Digital Publishing Institute
|c 2020
|
300 |
|
|
|a 1 electronic resource (270 p.)
|
653 |
|
|
|a non-holonomic robot
|
653 |
|
|
|a medical devices
|
653 |
|
|
|a biped robots
|
653 |
|
|
|a gait cycle
|
653 |
|
|
|a cable detection
|
653 |
|
|
|a predictable trajectory planning
|
653 |
|
|
|a car-like kinematics
|
653 |
|
|
|a path following
|
653 |
|
|
|a alpine ski
|
653 |
|
|
|a multiple mobile robots
|
653 |
|
|
|a Q-networks
|
653 |
|
|
|a hierarchical planning
|
653 |
|
|
|a discomfort
|
653 |
|
|
|a high step-up ratio
|
653 |
|
|
|a robot
|
653 |
|
|
|a small size
|
653 |
|
|
|a potential field
|
653 |
|
|
|a external disturbance
|
653 |
|
|
|a bio-inspired robot
|
653 |
|
|
|a Differential Evolution
|
653 |
|
|
|a adaptive control law
|
653 |
|
|
|a closed-loop detection
|
653 |
|
|
|a neural networks
|
653 |
|
|
|a douglas-peuker polygonal approximation
|
653 |
|
|
|a sliding mode observer
|
653 |
|
|
|a robot learning
|
653 |
|
|
|a singularity analysis
|
653 |
|
|
|a path tracking
|
653 |
|
|
|a load carriage
|
653 |
|
|
|a non-inertial reference frame
|
653 |
|
|
|a negative-buoyancy
|
653 |
|
|
|a harmonic potential field
|
653 |
|
|
|a uncertain environments
|
653 |
|
|
|a variable spray
|
653 |
|
|
|a mathematical modeling
|
653 |
|
|
|a dynamic coupling analysis
|
653 |
|
|
|a multi-objective optimization
|
653 |
|
|
|a rehabilitation system
|
653 |
|
|
|a spiral curve
|
653 |
|
|
|a muscle activities
|
653 |
|
|
|a UAV
|
653 |
|
|
|a minimally invasive surgery robot
|
653 |
|
|
|a dynamic neural networks
|
653 |
|
|
|a quadcopter UAV
|
653 |
|
|
|a snake-like robot
|
653 |
|
|
|a static environments
|
653 |
|
|
|a position control
|
653 |
|
|
|a mechanism
|
653 |
|
|
|a system design
|
653 |
|
|
|a self-reconfigurable robot
|
653 |
|
|
|a geodesic
|
653 |
|
|
|a exploration
|
653 |
|
|
|a switching control
|
653 |
|
|
|a PID algorithm
|
653 |
|
|
|a target assignment
|
653 |
|
|
|a robotics
|
653 |
|
|
|a design and modeling
|
653 |
|
|
|a human-machine interactive navigation
|
653 |
|
|
|a manipulator
|
653 |
|
|
|a expansion logic strategy
|
653 |
|
|
|a cart
|
653 |
|
|
|a step climbing
|
653 |
|
|
|a enemy avoidance
|
653 |
|
|
|a motion camouflage control
|
653 |
|
|
|a mobile robot
|
653 |
|
|
|a Tetris-inspired
|
653 |
|
|
|a data association
|
653 |
|
|
|a stability analysis
|
653 |
|
|
|a subgoal graphs
|
653 |
|
|
|a NSGA-II
|
653 |
|
|
|a unmanned aerial vehicles
|
653 |
|
|
|a wall climbing robot
|
653 |
|
|
|a skiing robot
|
653 |
|
|
|a master-slave
|
653 |
|
|
|a inertial measurement unit (IMU)
|
653 |
|
|
|a biologically-inspired
|
653 |
|
|
|a mobile manipulation
|
653 |
|
|
|a electro-rheological fluids
|
653 |
|
|
|a altitude controller
|
653 |
|
|
|a regional growth
|
653 |
|
|
|a n/a
|
653 |
|
|
|a negative buoyancy
|
653 |
|
|
|a symmetrical adaptive variable impedance
|
653 |
|
|
|a prescription map translation
|
653 |
|
|
|a MPC
|
653 |
|
|
|a immersion and invariance
|
653 |
|
|
|a fault recovery
|
653 |
|
|
|a finite-time currents observer
|
653 |
|
|
|a high efficiency
|
653 |
|
|
|a 4WS4WD vehicle
|
653 |
|
|
|a obstacle avoidance
|
653 |
|
|
|a kinematic identification
|
653 |
|
|
|a grip planning
|
653 |
|
|
|a polyomino tiling theory
|
653 |
|
|
|a similarity measure
|
653 |
|
|
|a ROS
|
653 |
|
|
|a transportation
|
653 |
|
|
|a hardware-in-the-loop simulation
|
653 |
|
|
|a action generation
|
653 |
|
|
|a actuatorless
|
653 |
|
|
|a dynamic gait
|
653 |
|
|
|a head-raising
|
653 |
|
|
|a chameleon
|
653 |
|
|
|a sample gathering problem
|
653 |
|
|
|a variable speed
|
653 |
|
|
|a robots
|
653 |
|
|
|a working efficiency
|
653 |
|
|
|a autonomous underwater vehicle (AUV)
|
653 |
|
|
|a pesticide application
|
653 |
|
|
|a shape-fitting
|
653 |
|
|
|a lane change
|
653 |
|
|
|a Thau observer
|
653 |
|
|
|a flapping
|
653 |
|
|
|a kinematic singularity
|
653 |
|
|
|a hierarchical path planning
|
653 |
|
|
|a computing time
|
653 |
|
|
|a manipulation action sequences
|
653 |
|
|
|a biped mechanism
|
653 |
|
|
|a motion sensor
|
653 |
|
|
|a autonomous vehicle
|
653 |
|
|
|a simultaneous localization and mapping (SLAM)
|
653 |
|
|
|a sparse pose adjustment (SPA)
|
653 |
|
|
|a input saturation
|
653 |
|
|
|a trajectory planning
|
653 |
|
|
|a facial and gender recognition
|
653 |
|
|
|a stopper
|
653 |
|
|
|a spatial pyramid pooling
|
653 |
|
|
|a cable disturbance modeling
|
653 |
|
|
|a actuators
|
653 |
|
|
|a industrial robotic manipulator
|
653 |
|
|
|a mobile robot navigation
|
653 |
|
|
|a hybrid robot
|
653 |
|
|
|a monocular vision
|
653 |
|
|
|a rendezvous consensus
|
653 |
|
|
|a position/force cooperative control
|
653 |
|
|
|a integral line-of-sight
|
653 |
|
|
|a Newton iteration
|
653 |
|
|
|a radial basis function neural networks
|
653 |
|
|
|a methane
|
653 |
|
|
|a formation control
|
653 |
|
|
|a optimization
|
653 |
|
|
|a drilling end-effector
|
653 |
|
|
|a inverse kinematics
|
653 |
|
|
|a obstacle avoidance system
|
653 |
|
|
|a droplets penetrability
|
653 |
|
|
|a machine learning
|
653 |
|
|
|a drag-based system
|
653 |
|
|
|a curvature constraint
|
653 |
|
|
|a state constraints
|
653 |
|
|
|a jumping robot
|
653 |
|
|
|a exoskeleton
|
653 |
|
|
|a centralized architecture
|
653 |
|
|
|a deposition uniformity
|
653 |
|
|
|a unmanned aerial vehicle
|
653 |
|
|
|a non-prehensile manipulation
|
653 |
|
|
|a curve fitting
|
653 |
|
|
|a goal exchange
|
653 |
|
|
|a curvilinear obstacle
|
653 |
|
|
|a snake robot
|
653 |
|
|
|a pneumatics
|
653 |
|
|
|a mobile robots
|
653 |
|
|
|a safety
|
653 |
|
|
|a legged robot
|
653 |
|
|
|a undiscovered sensor values
|
653 |
|
|
|a localization
|
653 |
|
|
|a auto-tuning
|
653 |
|
|
|a climbing robot
|
653 |
|
|
|a differential wheeled robot
|
653 |
|
|
|a q-learning
|
653 |
|
|
|a Geometric Algebra
|
653 |
|
|
|a curvature constraints
|
653 |
|
|
|a dynamic environment
|
653 |
|
|
|a safety recovery mechanism
|
653 |
|
|
|a manipulation planning
|
653 |
|
|
|a service robot
|
653 |
|
|
|a trajectory interpolation
|
653 |
|
|
|a magneto-rheological fluids
|
653 |
|
|
|a self-learning
|
653 |
|
|
|a remotely operated vehicle
|
653 |
|
|
|a end effector
|
653 |
|
|
|a high-gain observer
|
653 |
|
|
|a contact planning
|
653 |
|
|
|a lumped parameter method
|
653 |
|
|
|a formation of robots
|
653 |
|
|
|a micro mobile robot
|
653 |
|
|
|a reinforcement learning
|
653 |
|
|
|a victim-detection
|
653 |
|
|
|a real-time action recognition
|
653 |
|
|
|a gait adaptation
|
653 |
|
|
|a Robot Operating System
|
653 |
|
|
|a extended state observer (ESO)
|
653 |
|
|
|a path planning
|
653 |
|
|
|a Lyapunov-like function
|
653 |
|
|
|a turning model LIP
|
653 |
|
|
|a topological map
|
653 |
|
|
|a loop closure detection
|
653 |
|
|
|a dragonfly
|
653 |
|
|
|a glass façade cleaning robot
|
653 |
|
|
|a artificial fish swarm algorithm
|
653 |
|
|
|a robot navigation
|
653 |
|
|
|a force control
|
653 |
|
|
|a object mapping
|
653 |
|
|
|a fault diagnosis
|
653 |
|
|
|a numerical evaluation
|
653 |
|
|
|a SEA
|
653 |
|
|
|a control efficacy
|
653 |
|
|
|a non-holonomic mobile robot
|
653 |
|
|
|a excellent driver model
|
653 |
|
|
|a tri-tilt-rotor
|
653 |
|
|
|a piezoelectric actuator
|
653 |
|
|
|a dialytic elimination
|
653 |
|
|
|a grip optimization
|
653 |
|
|
|a multi-criteria decision making
|
653 |
|
|
|a decision making
|
653 |
|
|
|a extend procedure
|
653 |
|
|
|a robotic drilling
|
653 |
|
|
|a unmanned surface vessel
|
653 |
|
|
|a nonlinear differentiator
|
653 |
|
|
|a 3D-SLAM
|
653 |
|
|
|a area decomposition
|
653 |
|
|
|a compact driving unit
|
653 |
|
|
|a iterative learning
|
653 |
|
|
|a transition mode
|
653 |
|
|
|a evolutionary operators
|
653 |
|
|
|a pallet transportation
|
653 |
|
|
|a hybrid bionic robot
|
653 |
|
|
|a opposite angle-based exact cell decomposition
|
653 |
|
|
|a cleaning robot
|
653 |
|
|
|a powered exoskeleton
|
653 |
|
|
|a stability criterion
|
653 |
|
|
|a LOS
|
653 |
|
|
|a mapping
|
653 |
|
|
|a biomimetic robot
|
653 |
|
|
|a shape memory alloys
|
653 |
|
|
|a coverage path planning
|
653 |
|
|
|a PSO
|
653 |
|
|
|a missile control system
|
653 |
|
|
|a History of engineering and technology / bicssc
|
653 |
|
|
|a coalmine
|
653 |
|
|
|a disturbance-rejection control
|
653 |
|
|
|a intelligent mobile robot
|
653 |
|
|
|a continuous hopping
|
653 |
|
|
|a extremum-seeking
|
653 |
|
|
|a behaviour dynamics
|
653 |
|
|
|a deep reinforcement learning
|
653 |
|
|
|a target tracking
|
653 |
|
|
|a dynamical model
|
653 |
|
|
|a hover mode
|
653 |
|
|
|a snake robots
|
653 |
|
|
|a kinematics
|
653 |
|
|
|a collision avoidance
|
653 |
|
|
|a object-oriented
|
653 |
|
|
|a joint limit avoidance
|
653 |
|
|
|a high-speed target
|
653 |
|
|
|a smart materials
|
653 |
|
|
|a swarm-robotics
|
653 |
|
|
|a Rodrigues parameters
|
653 |
|
|
|a ATEX
|
653 |
|
|
|a robot motion
|
653 |
|
|
|a series elastic actuator
|
653 |
|
|
|a gesture recognition
|
653 |
|
|
|a hopping robot
|
653 |
|
|
|a biped climbing robots
|
653 |
|
|
|a G3-continuity
|
653 |
|
|
|a single actuator
|
653 |
|
|
|a quad-tilt rotor
|
653 |
|
|
|a quadruped robot
|
653 |
|
|
|a non-singular fast-terminal sliding-mode control
|
653 |
|
|
|a constrained motion
|
653 |
|
|
|a fault-tolerant control
|
653 |
|
|
|a micro air vehicle
|
653 |
|
|
|a ocean current
|
653 |
|
|
|a servo valve
|
653 |
|
|
|a dynamic uncertainty
|
653 |
|
|
|a fair optimisation
|
653 |
|
|
|a phase-shifting
|
653 |
|
|
|a graph representation
|
653 |
|
|
|a sliding mode control
|
653 |
|
|
|a convolutional neural network
|
653 |
|
|
|a human-robot interaction
|
653 |
|
|
|a parallel navigation
|
653 |
|
|
|a centrifugal force
|
653 |
|
|
|a passive skiing turn
|
653 |
|
|
|a space robot
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b DOAB
|a Directory of Open Access Books
|
500 |
|
|
|a Creative Commons (cc), https://creativecommons.org/licenses/by-nc-nd/4.0/
|
028 |
5 |
0 |
|a 10.3390/books978-3-03921-947-6
|
856 |
4 |
2 |
|u https://directory.doabooks.org/handle/20.500.12854/40204
|z DOAB: description of the publication
|
856 |
4 |
0 |
|u https://www.mdpi.com/books/pdfview/book/2069
|7 0
|x Verlag
|3 Volltext
|
082 |
0 |
|
|a 720
|
082 |
0 |
|
|a 900
|
082 |
0 |
|
|a 320
|
082 |
0 |
|
|a 380
|
082 |
0 |
|
|a 363
|
082 |
0 |
|
|a 576
|
082 |
0 |
|
|a 500
|
082 |
0 |
|
|a 140
|
082 |
0 |
|
|a 700
|
082 |
0 |
|
|a 600
|
082 |
0 |
|
|a 620
|
082 |
0 |
|
|a 340
|
520 |
|
|
|a Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
|