STM Characterization of Phenylene-Ethynylene Oligomers on Au(111) and their Integration into Carbon Nanotube Nanogaps

Molecular electronics requires both profound knowledge of a molecule's structure and functionality on a surface and controlled positioning between electrodes with nanometer-sized gaps. In the first part of this work, a detailed scanning tunneling microscope study of two variants of oligo(phenyl...

Full description

Bibliographic Details
Main Author: Thiele, Cornelius
Format: eBook
Language:English
Published: KIT Scientific Publishing 2014
Series:Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut
Subjects:
Online Access:
Collection: Directory of Open Access Books - Collection details see MPG.ReNa
LEADER 01814nma a2200289 u 4500
001 EB001966379
003 EBX01000000000000001129281
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210512 ||| eng
020 |a 1000041811 
020 |a 9783731502357 
100 1 |a Thiele, Cornelius 
245 0 0 |a STM Characterization of Phenylene-Ethynylene Oligomers on Au(111) and their Integration into Carbon Nanotube Nanogaps  |h Elektronische Ressource 
260 |b KIT Scientific Publishing  |c 2014 
300 |a 1 electronic resource (125 p. p.) 
653 |a Physics / bicssc 
653 |a Nanoelektronik Molekulardrähte Rastertunnelmikroskopie Kohlenstoffnanoröhren Nanogap-ElektrodenNanoelectronics Molecular wires Scanning tunneling microscopy Carbon nanotubes Nanogap electrodes 
041 0 7 |a eng  |2 ISO 639-2 
989 |b DOAB  |a Directory of Open Access Books 
490 0 |a Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut 
500 |a Creative Commons (cc), https://creativecommons.org/licenses/by-sa/4.0/ 
028 5 0 |a 10.5445/KSP/1000041811 
856 4 0 |u https://www.ksp.kit.edu/9783731502357  |7 0  |x Verlag  |3 Volltext 
856 4 2 |u https://directory.doabooks.org/handle/20.500.12854/60045  |z DOAB: description of the publication 
082 0 |a 530 
520 |a Molecular electronics requires both profound knowledge of a molecule's structure and functionality on a surface and controlled positioning between electrodes with nanometer-sized gaps. In the first part of this work, a detailed scanning tunneling microscope study of two variants of oligo(phenylene ethynylene) molecules is presented. In the second part, methods of fabricating carbon nanotube nanogap electrodes as direct contacts to these molecules are explored.