Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications Proceedings of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design applications, June 18-22, 2018, Santorini, Greece

This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance b...

Full description

Bibliographic Details
Other Authors: Braza, Marianna (Editor), Hourigan, Kerry (Editor), Triantafyllou, Michael (Editor)
Format: eBook
Language:English
Published: Cham Springer International Publishing 2021, 2021
Edition:1st ed. 2021
Series:Notes on Numerical Fluid Mechanics and Multidisciplinary Design
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 04246nmm a2200409 u 4500
001 EB001959530
003 EBX01000000000000001122432
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210312 ||| eng
020 |a 9783030555948 
100 1 |a Braza, Marianna  |e [editor] 
245 0 0 |a Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications  |h Elektronische Ressource  |b Proceedings of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design applications, June 18-22, 2018, Santorini, Greece  |c edited by Marianna Braza, Kerry Hourigan, Michael Triantafyllou 
250 |a 1st ed. 2021 
260 |a Cham  |b Springer International Publishing  |c 2021, 2021 
300 |a XIII, 599 p. 352 illus., 287 illus. in color  |b online resource 
505 0 |a Alteration of the Spanwise Structure of the Turbulent Flow Past a Cylinder Subjected to Vortex-Induced Vibrations -- Flow Past an Oscillating Cylinder Effects of Oscillation Mode on Wake Structure -- Validation of Coupled CFD-CSM Methods for Vibration Phenomena in Nuclear Reactor Cores -- Stress Analysis of Wind Turbine Tower Flange Using Fluid-Structure Interaction Method -- The Dynamics of Bumblebee Wing Pitching Rotation Measurement And Modelling -- FSI Simulation Using a Membrane Model Inflation of Balloons -- Synergistic Flow Induced Oscillations of Multiple Cylinders in Harvesting Marine Hydrokinetic Energy -- Dynamic Response of Wall-Mounted Flaps in an Oscillating Crossflow 
653 |a Engineering Fluid Dynamics 
653 |a Fluid mechanics 
653 |a Biomedical engineering 
653 |a Applied Dynamical Systems 
653 |a Engineering design 
653 |a Biomedical Engineering and Bioengineering 
653 |a Nonlinear theories 
653 |a Mathematical physics 
653 |a Engineering Design 
653 |a Theoretical, Mathematical and Computational Physics 
653 |a Dynamics 
700 1 |a Hourigan, Kerry  |e [editor] 
700 1 |a Triantafyllou, Michael  |e [editor] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a Notes on Numerical Fluid Mechanics and Multidisciplinary Design 
028 5 0 |a 10.1007/978-3-030-55594-8 
856 4 0 |u https://doi.org/10.1007/978-3-030-55594-8?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 620.1064 
520 |a This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear layers immediately downstream of separation. New insights into turbulent flow interacting with actively deformable structures, leading to new ways of adapting and controlling the body shape and vibrations to respond to these critical conditions, are investigated. The book covers new featuresof turbulent flows in boundary layers over wings and in shear layers immediately downstream: studies of natural and artificially generated fluctuations; reduction of noise and drag; and electromechanical conversion topics. Smart actuators as well as how smart designs lead to considerable benefits compared with conventional methods are also extensively discussed. Based on contributions presented at the IUTAM Symposium “Critical Flow Dynamics involving Moving/Deformable Structures with Design applications”, held in June 18-22, 2018, in Santorini, Greece, the book provides readers with extensive information about current theories, methods and challenges in flow and turbulence control, and practical knowledge about how to use this information together with smart and bio-inspired design tools to improve aerodynamic and hydrodynamic design and safety.