The analytics of risk model validation

Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is...

Full description

Bibliographic Details
Main Author: Christodoulakis, George
Other Authors: Satchell, Stephen
Format: eBook
Language:English
Published: Amsterdam Elsevier/Academic Press 2008
Edition:1st ed
Series:Elsevier finance
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05173nmm a2200565 u 4500
001 EB001947919
003 EBX01000000000000001110821
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 9780080553887 
020 |a 9786611071509 
020 |a 9781281071507 
020 |a 6611071504 
020 |a 1281071501 
020 |a 0080553885 
050 4 |a HG 
050 4 |a HD61 
100 1 |a Christodoulakis, George 
245 0 0 |a The analytics of risk model validation  |c edited by George Christodoulakis, Stephen Satchell 
250 |a 1st ed 
260 |a Amsterdam  |b Elsevier/Academic Press  |c 2008 
300 |a 1 volume 
505 0 |a Chapter 6 A simple method for regulators to cross-check operational risk loss models for banksAbstract; 1. Introduction; 2. Background; 3. Cross-checking procedure; 4. Justification of our approach; 5. Justification for a lower bound using the lognormal distribution; 6. Conclusion; References; Chapter 7 Of the credibility of mapping and benchmarking credit risk estimates for internal rating systems; Abstract; 1. Introduction; 2. Why does the portfolio's structure matter?; 3. Credible credit ratings and credible credit risk estimates; 4. An empirical illustration; 5. Credible mapping 
505 0 |a NotesAppendix; 1. Error distribution; 2. Two-piece normal distribution; 3. t-Distribution; 4. Skew-t distribution; Chapter 5 Measuring concentration risk in credit portfolios; Abstract; 1. Concentration risk and validation; 2. Concentration risk and the IRB model; 3. Measuring name concentration; 4. Measuring sectoral concentration; 5. Numerical example; 6. Future challenges of concentration risk measurement; 7. Summary; References; Notes; Appendix A.1: IRB risk weight functions and concentration risk; Appendix A.2: Factor surface for the diversification factor; Appendix A.3 
505 0 |a 8. Back-casting9. Conclusions; References; Chapter 3 The validity of credit risk model validation methods; Abstract; 1. Introduction; 2. Measures of discriminatory power; 3. Uncertainty in credit risk model validation; 4. Confidence interval for ROC; 5. Bootstrapping; 6. Optimal rating combinations; 7. Concluding remarks; References; Chapter 4 A moments-based procedure for evaluating risk forecasting models; Abstract; 1. Introduction; 2. Preliminary analysis; 3. The likelihood ratio test; 4. A moments test of model adequacy; 5. An illustration; 6. Conclusions; 7. Acknowledgements; References 
505 0 |a Front Cover; The Analytics of Risk Model Validation; Copyright Page; Table of Contents; About the editors; About the contributors; Preface; Chapter 1 Determinants of small business default; Abstract; 1. Introduction; 2. Data, methodology and summary statistics; 3. Empirical results of small business default; 4. Conclusion; References; Notes; Chapter 2 Validation of stress testing models; Abstract; 1. Why stress test?; 2. Stress testing basics; 3. Overview of validation approaches; 4. Subsampling tests; 5. Ideal scenario validation; 6. Scenario validation; 7. Cross-segment validation 
505 0 |a Includes bibliographical references and index 
505 0 |a 6. Conclusions7. Acknowledgements; References; Appendix; 1. Further elements of modern credibility theory; 2. Proof of the credibility fundamental relation; 3. Mixed Gamma-Poisson distribution and negative binomial; 4. Calculation of the Bühlmann credibility estimate under the Gamma-Poisson model; 5. Calculation of accuracy ratio; Chapter 8 Analytic models of the ROC curve: Applications to credit rating model validation; Abstract; 1. Introduction; 2. Theoretical implications and applications; 3. Choices of distributions; 4. Performance evaluation on the AUROC estimation with simulated data 
653 |a Risque opérationnel / Modèles mathématiques 
653 |a Risk management / Mathematical models 
653 |a Risk management / Mathematical models / fast 
653 |a Operational risk / Mathematical models 
653 |a Gestion du risque / Modèles mathématiques 
700 1 |a Satchell, Stephen 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
490 0 |a Elsevier finance 
776 |z 0080553885 
776 |z 9780750681582 
776 |z 9780080553887 
776 |z 9786611071509 
776 |z 0750681586 
776 |z 6611071504 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780750681582/?ar  |x Verlag  |3 Volltext 
082 0 |a 658.155015118 
082 0 |a 658.155 
082 0 |a 658 
082 0 |a 368 
520 |a Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is part of the regulatory structure that these risk models be validated both internally and externally, and there is a great shortage of information as to best practise. Editors Christodoulakis and Satchell collect papers that are beginning to appear by regulators, consultants, and academics, to prov