Statistics for big data for dummies

Big data figures into everything from weather forecasting to political polling. You'll get a handle on the statistical methods used when working with big data, applications for it, ways to organize and check data, and a whole lot more. You will find out what big data is, characteristics that de...

Full description

Bibliographic Details
Main Authors: Anderson, Alan, Semmelroth, David (Author)
Format: eBook
Language:English
Published: Hoboken, NJ John Wiley and Sons, Inc. 2015
Series:For dummies
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05358nmm a2200541 u 4500
001 EB001946326
003 EBX01000000000000001109228
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 1118940032 
020 |a 1118940016 
020 |a 9781118940037 
020 |a 1118940024 
020 |a 9781118940020 
050 4 |a QA76.9.D343 
100 1 |a Anderson, Alan 
245 0 0 |a Statistics for big data for dummies  |c by Alan Anderson with David Semmelroth 
260 |a Hoboken, NJ  |b John Wiley and Sons, Inc.  |c 2015 
300 |a 1 online resource 
505 0 |a VelocityVariety; Traditional Database Management Systems (DBMS); Relational model databases; Hierarchical model databases; Network model databases; Alternatives to traditional database systems; Chapter 3 Using Big Data: The Hot Applications; Big Data and Weather Forecasting; Big Data and Healthcare Services; Big Data and Insurance; Big Data and Finance; Big Data and Electric Utilities; Big Data and Higher Education; Big Data and Retailers; Nordstrom; Walmart; Amazon.com; Big Data and Search Engines; Big Data and Social Media; Chapter 4 Understanding Probabilities 
505 0 |a Title Page; Copyright Page; Table of Contents; Introduction; About This Book; Foolish Assumptions; Icons Used in This Book; Beyond the Book; Where to Go From Here; Part I Introducing Big Data Statistics; Chapter 1 What Is Big Data and What Do You Do with It?; Characteristics of Big Data; Exploratory Data Analysis (EDA); Graphical EDA techniques; Quantitative EDA techniques; Statistical Analysis of Big Data; Probability distributions; Regression analysis; Time series analysis; Forecasting techniques; Chapter 2 Characteristics of Big Data: The Three Vs; Characteristics of Big Data; Volume 
505 0 |a Checking discrete dataChecking continuous data; Frequently Encountered Data Headaches; Missing values; Duplicate records; Other Common Data Transformations; Percentiles; Standard scores; Dummy variables; Chapter 7 Figuring the Format: Important Computer File Formats; Spreadsheet Formats; Comma-separated variables (.csv); Text; Microsoft Excel; Web formats; Database Formats; Microsoft Access (.accdb); MySQL (.frm); Chapter 8 Checking Assumptions: Testing for Normality; Goodness of fit test; The chi-square distribution; The null and alternative hypotheses; The level of significance 
505 0 |a The alternative hypothesisThe level of significance; The test statistic; The critical value (s); To reject or not to reject, that is the question; Measures of association; Higher-Order Measures; Skewness; Kurtosis; Part II Preparing and Cleaning Data; Chapter 6 Dirty Work: Preparing Your Data for Analysis; Passing the Eye Test: Does Your Data Look Correct?; Checking your sources; Verifying formats; Typecasting your data; Being Careful with Dates; Dealing with datetime formats; Taking geography into account; How your software thinks about dates; Does the Data Make Sense? 
505 0 |a Includes bibliographical references and index 
505 0 |a The Core Structure: Probability SpacesDiscrete Probability Distributions; Counting outcomes; When only two things can happen: The binomial distribution; Continuous Probability Distributions; The normal distribution; Introducing Multivariate Probability Distributions; Joint probabilities; Unconditional probabilities; Conditional probabilities; Chapter 5 Basic Statistical Ideas; Some Preliminaries Regarding Data; Nominal data; Ordinal data; Summary Statistical Measures; Measures of central tendency; Measures of dispersion; Overview of Hypothesis Testing; The null hypothesis 
653 |a Data Mining / bisacsh/2022 
653 |a Données volumineuses / Méthodes statistiques 
653 |a COMPUTERS. / bisacsh/2022 
653 |a Databases / bisacsh/2022 
653 |a COMPUTERS / General / bisacsh 
653 |a Big data / Statistical methods 
700 1 |a Semmelroth, David  |e author 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
490 0 |a For dummies 
015 |a GBB506833 
015 |a GBB504761 
776 |z 1118940024 
776 |z 9781118940037 
776 |z 9781118940020 
776 |z 9781118940013 
776 |z 9781118940013 
776 |z 1118940016 
776 |z 1118940032 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118940013/?ar  |x Verlag  |3 Volltext 
082 0 |a 006.3/12 
520 |a Big data figures into everything from weather forecasting to political polling. You'll get a handle on the statistical methods used when working with big data, applications for it, ways to organize and check data, and a whole lot more. You will find out what big data is, characteristics that define it, how it's used, and what it makes possible; how to handle it by exploring statistical techniques used with big data, including probability distributions, regression analysis, time series analysis, and forecasting techniques; learn how big data can be analyzed with graphical techniques and how to identify valid, useful, and understandable patterns in data; examine key univariate and multivariate statistical techniques for analyzing data; discover techniques for forecasting the future values of a dataset; learn about the best software packages and programming tools for analyzing statistical data. --