Partial-update adaptive filters and adaptive signal processing design analysis and implementation

Partial update adaptive signal processing algorithms not only permit significant complexity reduction in adaptive filter implementations, but also can improve the adaptive filter performance in telecommunications and image and video processing applications. This book gives state-of-art methods for t...

Full description

Bibliographic Details
Main Author: Doğançay, Kutluyıl
Format: eBook
Language:English
Published: Oxford, U.K., Burlington, Mass. Academic Press 2008
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05132nmm a2200481 u 4500
001 EB001938379
003 EBX01000000000000001101281
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 0080921159 
020 |a 9780080921150 
020 |a 0123741963 
050 4 |a TK5102.9 
100 1 |a Doğançay, Kutluyıl 
245 0 0 |a Partial-update adaptive filters and adaptive signal processing  |b design analysis and implementation  |c Kutluyil Doǧançay 
260 |a Oxford, U.K., Burlington, Mass.  |b Academic Press  |c 2008 
300 |a 1 volume  |b illustrations 
505 0 |a IntroductionLeast-mean-square algorithm; Partial-update LMS algorithms; Periodic-partial-update LMS algorithm; Sequential-partial-update LMS algorithm; Stochastic-partial-update LMS algorithm; M -max LMS algorithm; Computational complexity; Normalized least-mean-square algorithm; Partial-update NLMS algorithms; Periodic-partial-update NLMS algorithm; Sequential-partial-update NLMS algorithm; Stochastic-partial-update NLMS algorithm; M -max NLMS algorithm; Selective-partial-update NLMS algorithm; Set-membership partial-update NLMS algorithm; Computational complexity 
505 0 |a Front cover; Title page; Copyright page; Dedication; Acknowledgements; Table of Contents; Preface; Chapter 1. Introduction; Adaptive signal processing; Examples of adaptive filtering; Adaptive system identification; Adaptive inverse system identification; Raison d'être for partial coefficient updates; Resource constraints; Convergence performance; System identification with white input signal; System identification with correlated input signal; Chapter 2. Approaches to partial coefficient updates; Introduction; Periodic partial updates; Example 1: Convergence performance 
505 0 |a Includes bibliographical references and index 
505 0 |a Example 2: Convergence difficultiesSequential partial updates; Example 1: Convergence performance; Example 2: Cyclostationary inputs; Example 3: Instability; Stochastic partial updates; System identification example; M -max updates; Example 1: Eigenvalue spread of RM; Example 2: Convergence performance; Example 3: Convergence rate and eigenvalues of RM; Example 4: Convergence difficulties; Example 5: Instability; Selective partial updates; Constrained optimization; Instantaneous approximation of Newton's method; q -Norm constrained optimization; Averaged system; Example 1: Eigenanalysis 
505 0 |a Affine projection algorithmPartial-update affine projection algorithms; Periodic-partial-update APA; Sequential-partial-update APA; Stochastic-partial-update APA; M -max APA; Selective-partial-update APA; Set-membership partial-update APA; Selective-regressor APA; Computational complexity; Recursive least square algorithm; Partial-update RLS algorithms; Periodic-partial-update RLS algorithm; Sequential-partial-update RLS algorithm; Stochastic-partial-update RLS algorithm; Selective-partial-update RLS algorithm; Set-membership partial-update RLS algorithm; Partial-update RLS simulations 
505 0 |a Example 2: Convergence performanceExample 3: Instability; Set membership partial updates; Example 1: Convergence performance; Example 2: Instability; Block partial updates; Complexity considerations; Chapter 3. Convergence and stability analysis; Introduction; Convergence performance; Steady-state analysis; Partial-update LMS algorithms; Partial-update NLMS algorithms; Simulation examples for steady-state analysis; Convergence analysis; Partial-update LMS algorithms; Partial-update NLMS algorithms; Simulation examples for convergence analysis; Chapter 4. Partial-update adaptive filters 
653 |a Adaptive signal processing / http://id.loc.gov/authorities/subjects/sh85000805 
653 |a Filtres adaptatifs 
653 |a Algorithmes 
653 |a Traitement adaptatif du signal 
653 |a algorithms / aat 
653 |a Algorithms / http://id.loc.gov/authorities/subjects/sh85003487 
653 |a Adaptive signal processing / fast 
653 |a Adaptive filters / fast 
653 |a Algorithms / fast 
653 |a Adaptive filters / http://id.loc.gov/authorities/subjects/sh85000804 
653 |a Adaptive filters / Design and construction 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
015 |a GBB6H5817 
776 |z 9780123741967 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780123741967/?ar  |x Verlag  |3 Volltext 
082 0 |a 745.4 
082 0 |a 621.3822 
520 |a Partial update adaptive signal processing algorithms not only permit significant complexity reduction in adaptive filter implementations, but also can improve the adaptive filter performance in telecommunications and image and video processing applications. This book gives state-of-art methods for the design and development of partial update adaptive signal processing algorithms for use in systems development. The book gives a comprehensive coverage of key partial updating schemes, giving detailed analysis and applications to noise cancellation, channel equalization, multiuser detection