Energy storage devices for electronic systems rechargeable batteries and supercapacitors

This book provides the opportunity to expand your knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. It will strengthen your understanding of energy storage from a practical, applications-based point-of-view, without requiring detailed...

Full description

Bibliographic Details
Main Author: Kularatna, Nihal
Format: eBook
Language:English
Published: London Academic Press. 2015
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 05547nmm a2200517 u 4500
001 EB001919502
003 EBX01000000000000001082404
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 9780124081192 
050 4 |a TK2980 
100 1 |a Kularatna, Nihal 
245 0 0 |a Energy storage devices for electronic systems  |b rechargeable batteries and supercapacitors  |c Nihal Kularatna 
260 |a London  |b Academic Press.  |c 2015 
300 |a 1 online resource  |b illustrations (some color) 
505 0 |a Front Cover; Energy Storage Devices for Electronic Systems: Rechargeable Batteries and Supercapacitors; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Energy storage devices-a general overview; 1.1. Introduction; 1.2. Simple fundamentals; 1.2.1. Work, power, and energy; 1.2.2. Impact of the open circuit voltage and internal resistance of an energy source; 1.2.2.1. Maximum power transfer; 1.2.3. Energy wasted inside a source and its heating effect; 1.2.4. Time delays in delivering or transferring energy; 1.2.5. Complex models of ESDs 
505 0 |a Includes bibliographical references and index 
505 0 |a 1.7.1.5. Self-discharge rate1.7.1.6. Charge acceptance or coulombic efficiency; 1.8. Ragone plot; References; Chapter 2: Rechargeable battery technologies: an electronic engineers view point; 2.1. Introduction; 2.2. Battery terminology and fundamentals; 2.2.1. Capacity; 2.2.1.1. Standard capacity; 2.2.1.2. Actual capacity; 2.2.1.3. Available capacity; 2.2.1.4. Rated capacity; 2.2.1.5. Retained capacity; 2.2.2. Peukerts law and the battery capacity; 2.2.3. C rate; 2.2.4. Energy density; 2.2.5. Power density of a battery; 2.2.6. Cycle life; 2.2.7. Cyclic energy density 
505 0 |a 2.5.1. Discharge characteristics2.5.2. Charge characteristics; 2.5.3. Voltage depression effect; 2.6. Nickel metal hydride batteries; 2.6.1. Construction; 2.6.2. A comparison between NiCd and NiMH batteries; 2.7. Lithium-based rechargeable batteries; 2.7.1. Construction; 2.7.2. Charge and discharge characteristics; 2.7.3. Li-ion micro batteries; 2.8. Reusable alkaline batteries; 2.8.1. Cumulative capacity; 2.9. Zn-air batteries; Chapter 3: Dynamics, models, and management of rechargeable batteries; 3.1. Introduction; 3.2. Simplest concept of a battery; 3.3. Battery dynamics 
505 0 |a 2.2.8. Self-discharge rate2.2.9. Charge acceptance; 2.2.10. Depth of discharge; 2.2.11. Battery discharge curves and related terminology; 2.2.11.1. Voltage plateau; 2.2.11.2. Midpoint voltage; 2.2.12. Overcharge; 2.2.13. State of charge (SoC); 2.2.14. State of health; 2.3. Battery technologies: an overview; 2.4. Lead-acid batteries; 2.4.1. Flooded lead-acid batteries; 2.4.2. Sealed lead-acid batteries; 2.4.2.1. Discharge performance of sealed lead-acid cells; 2.4.2.2. Capacity during battery life; 2.4.2.3. Effect of pulse discharge on capacity; 2.4.3. Charging; 2.5. Nickel-cadmium batteries 
505 0 |a 1.3. Energy storage in electrical systems1.3.1. Basic electrical components as in-circuit energy storage; 1.3.2. Energy storage options for longer term and infrequent utilization; 1.3.3. Flywheel as an ESD in electrical systems; 1.3.4. Fuel cells; 1.4. Compressed air energy storage; 1.5. Superconductive magnetic energy storage; 1.6. Rapid energy transfer requirements and fundamental circuit issues; 1.7. Technical specifications of ESDs; 1.7.1. Energy and power density; 1.7.1.1. Energy density; 1.7.1.2. Power density; 1.7.1.3. Cycle life; 1.7.1.4. Cyclic energy density 
653 |a Accumulateurs 
653 |a batteries (electrical) / aat 
653 |a Énergie / Stockage 
653 |a Storage batteries / fast 
653 |a Electronic systems / http://id.loc.gov/authorities/subjects/sh85042373 
653 |a TECHNOLOGY & ENGINEERING / Mechanical / bisacsh 
653 |a Systèmes électroniques 
653 |a Supercondensateurs 
653 |a Electronic systems / fast 
653 |a Energy storage / fast 
653 |a Energy storage / http://id.loc.gov/authorities/subjects/sh85043149 
653 |a Supercapacitors / http://id.loc.gov/authorities/subjects/sh2007002091 
653 |a Supercapacitors / fast 
653 |a Storage batteries / http://id.loc.gov/authorities/subjects/sh85128358 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
776 |z 0124079474 
776 |z 9780124081192 
776 |z 0124081193 
776 |z 9780124079472 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780124079472/?ar  |x Verlag  |3 Volltext 
082 0 |a 620 
082 0 |a 621.3126 
520 |a This book provides the opportunity to expand your knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. It will strengthen your understanding of energy storage from a practical, applications-based point-of-view, without requiring detailed examination of underlying electrochemical equations. It provides explanations of the latest energy storage devices in a practical applications-based context; includes examples of circuit designs that optimize the use of supercapacitors, and pathways to improve existing designs by effectively managing energy storage devices crucial to both low and high power applications; covers batteries, BMS (battery management systems) and cutting-edge advances in supercapacitors, providing a unique compare and contrast examination demonstrating applications where each technology can offer unique benefits. --