Electrochemical engineering
"This book covers both fundamental principles and applications of electrochemical engineering. The goal is to create a text for classroom instruction or independent study at the senior undergraduate and beginning graduate student level. It provides numerous worked out illustrations as well as a...
Main Authors: | , |
---|---|
Format: | eBook |
Language: | English |
Published: |
Hoboken, NJ, USA
Wiley
2018
|
Edition: | First edition |
Subjects: | |
Online Access: | |
Collection: | O'Reilly - Collection details see MPG.ReNa |
Summary: | "This book covers both fundamental principles and applications of electrochemical engineering. The goal is to create a text for classroom instruction or independent study at the senior undergraduate and beginning graduate student level. It provides numerous worked out illustrations as well as a large number of end-of chapter problems. A supplementary solution manual has been developed"-- |
---|---|
Item Description: | Includes index. - Machine generated contents note: Preface Chapter 1 Introduction and Basic Principles (Charles Tobias) 1.1 Electrochemical Cells 1.2 Characterization of Electrochemical Reactions 1.3 Importance of Electrochemical Systems 1.4 Scientific Units, Constants and Conventions 1.5 Faraday's law 1.6 Faradaic efficiency 1.7 Current Density 1.8 Potential and Ohm's law 1.9 Electrochemical Systems: Example General References Problems Chapter 2 Cell Potential and Thermodynamics (W.M. . - Latimer) 2.1 Half-cell Reactions 2.2 Cell Potential 2.3 Expression for Cell Potential 2.4 Standard Potentials 2.5 Effect of Temperature on Standard Potential 2.6 Simplified Activity Coefficients 2.7 Use of Cell Potentials 2.8 Equilibrium constants 2.9 Pourbaix diagrams 2.10 Cells with a Liquid Junction 2.11 Reference electrodes 2.12 Equilibrium at Electrode Interface 2.13 Potential in Solution due to charge: Debye-Huckel theory 2.14 Activity and Activity Coefficients 2.15 Estimation of Activity Coefficients 2.16 Closure General References Problems Chapter 3 Electrochemical Kinetics (Alexander N. . - Frumkin) 3.1 Double Layer 3.2 Impact of potential on Reaction Rate 3.3 Use of the Butler-Volmer Kinetic Expression 3.4 Reaction Fundamentals 3.5 Simplified Forms of the Butler-Volmer Equation 3.6 Direct Fitting of the Butler-Volmer Equation 3.7 Influence of Mass Transfer on the Reaction Rate 3.8 Use of Kinetics Expression in Full Cells 3.9 Current Efficiency General References Problems Chapter 4 Transport (Carl Wagner) 4.1 Fick's Law 4.2 Nernst-Planck Equation 4.3 Conservation of Material 4.4 Transference Numbers, Mobilities, . - and Migration 4.5 Convective Mass Transfer 4.6 Concentration Overpotential 4.7 Current Distribution 4.8 Membrane transport General References Problems Chapter 5 Electrode Structures (John Newman) 5.1 Mathematical Description of Porous Electrodes 5.2 Characterization of Porous Electrodes 5.3 Impact of Porous Electrodes on Transport 5.4 Current Distribution i |
Physical Description: | 1 online resource |
ISBN: | 9781119004257 9781523115655 1119446597 1119446589 9781119446583 9781119446590 111900425X |