Building machine learning pipelines automating model life cycles with TensorFlow

Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. Y...

Full description

Bibliographic Details
Main Authors: Hapke, Hannes Max, Nelson, Catherine (Author)
Format: eBook
Language:English
Published: Sebastopol, CA O'Reilly Media 2020
Edition:First edition
Subjects:
Online Access:
Collection: O'Reilly - Collection details see MPG.ReNa
LEADER 03283nmm a2200493 u 4500
001 EB001912151
003 EBX01000000000000001075053
005 00000000000000.0
007 cr|||||||||||||||||||||
008 210123 ||| eng
020 |a 1492053163 
020 |a 9781492053163 
020 |a 1492053147 
050 4 |a Q325.5 
100 1 |a Hapke, Hannes Max 
245 0 0 |a Building machine learning pipelines  |b automating model life cycles with TensorFlow  |c Hannes Hapke and Catherine Nelson 
250 |a First edition 
260 |a Sebastopol, CA  |b O'Reilly Media  |c 2020 
300 |a 1 volume  |b illustrations 
505 0 |a Includes bibliographical references and index 
653 |a Cloud computing / fast 
653 |a Machine learning / http://id.loc.gov/authorities/subjects/sh85079324 
653 |a Infonuagique 
653 |a Cloud computing / http://id.loc.gov/authorities/subjects/sh2008004883 
653 |a Entreprises / Informatique 
653 |a Machine learning / fast 
653 |a Apprentissage automatique 
653 |a Business enterprises / Data processing / fast 
653 |a TensorFlow / http://id.loc.gov/authorities/names/n2019020612 
653 |a Business enterprises / Data processing 
700 1 |a Nelson, Catherine  |e author 
041 0 7 |a eng  |2 ISO 639-2 
989 |b OREILLY  |a O'Reilly 
776 |z 1492053147 
776 |z 1492053163 
776 |z 9781492053194 
776 |z 1492053198 
776 |z 9781492053163 
776 |z 9781492053149 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781492053187/?ar  |x Verlag  |3 Volltext 
082 0 |a 006.3/1 
082 0 |a 338 
082 0 |a 330 
520 |a Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines. Understand the machine learning management lifecycle Implement data pipelines with Apache Airflow and Kubeflow Pipelines Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated Design model feedback loops to increase your data sets and learn when to update your machine learning models