|
|
|
|
LEADER |
02284nmm a2200421 u 4500 |
001 |
EB001907975 |
003 |
EBX01000000000000001070877 |
005 |
00000000000000.0 |
007 |
cr||||||||||||||||||||| |
008 |
210123 ||| eng |
020 |
|
|
|a 9781466551541
|
050 |
|
4 |
|a HB849.47
|
100 |
1 |
|
|a O'Brien, Robert M.
|
245 |
0 |
0 |
|a Age-period-cohort models
|b approaches and analyses with aggregate data
|c Robert M. O'Brien
|
260 |
|
|
|a Boca Raton, Florida
|b CRC Press
|c 2014
|
300 |
|
|
|a xii, 204 pages
|b illustrations
|
505 |
0 |
|
|a 1. Introduction to the age, period, and cohort mix -- 2. Multiple classification models and constrained regression -- 3. Geometry of age-period-cohort (APC) models and constrained estimation -- 4. Estimable functions approach -- 5. Partitioning the variance in age-period-cohort (APC) models -- 6. Factor-characteristic approach -- 7. Conclusions : an empirical example
|
505 |
0 |
|
|a Includes bibliographical references and index
|
653 |
|
|
|a Mathematical models / fast
|
653 |
|
|
|a Modèles mathématiques
|
653 |
|
|
|a Mathematical models / http://id.loc.gov/authorities/subjects/sh85082124
|
653 |
|
|
|a Cohort analysis / fast
|
653 |
|
|
|a Cohort analysis / http://id.loc.gov/authorities/subjects/sh85027772
|
653 |
|
|
|a Age groups / Statistical models
|
653 |
|
|
|a Cohort Studies
|
653 |
|
|
|a mathematical models / aat
|
653 |
|
|
|a Models, Theoretical
|
653 |
|
|
|a REFERENCE / Questions & Answers / bisacsh
|
653 |
|
|
|a Analyse par cohorte
|
041 |
0 |
7 |
|a eng
|2 ISO 639-2
|
989 |
|
|
|b OREILLY
|a O'Reilly
|
490 |
0 |
|
|a Chapman & Hall/CRC statistics in the social and behavioral sciences series
|
776 |
|
|
|z 9781466551534
|
776 |
|
|
|z 9781466551541
|
776 |
|
|
|z 1466551542
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781466551541/?ar
|x Verlag
|3 Volltext
|
082 |
0 |
|
|a 001.4/22
|
520 |
|
|
|a Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data presents an introduction to the problems and strategies for modeling age, period, and cohort (APC) effects for aggregate-level data. These strategies include constrained estimation, the use of age and/or period and/or cohort characteristics, estimable functions, variance decomposition, and a new technique called the s-constraint approach
|