Measure, Integration and a Primer on Probability Theory Volume 1

The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side o...

Full description

Bibliographic Details
Main Author: Gentili, Stefano
Format: eBook
Language:English
Published: Cham Springer International Publishing 2020, 2020
Edition:1st ed. 2020
Series:La Matematica per il 3+2
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02879nmm a2200337 u 4500
001 EB001905001
003 EBX01000000000000001067907
005 00000000000000.0
007 cr|||||||||||||||||||||
008 201208 ||| eng
020 |a 9783030549404 
100 1 |a Gentili, Stefano 
245 0 0 |a Measure, Integration and a Primer on Probability Theory  |h Elektronische Ressource  |b Volume 1  |c by Stefano Gentili 
250 |a 1st ed. 2020 
260 |a Cham  |b Springer International Publishing  |c 2020, 2020 
300 |a XI, 463 p. 21 illus., 16 illus. in color  |b online resource 
505 0 |a Part I Sets: 1 Round-up of topology -- 2 Types of sets -- Part II Borel sets and Baire functions on R: 3 Borel sets in R -- 4.Baire functions on R -- 5 Borel functions and Baire functions -- Part III Families of sets: 6 Semi-algebras and algebras of sets -- 7. Monotone classes and σ-algebras -- Part IV Measure theory: 8. Set functions and measure -- 9 The Lebesgue measure -- 10. Measurable functions -- Part V Theory of integration: 11 The Lebesgue integral -- 12 Comparing notions of integral -- Part VI Fundamental theorems of integral calculus: 13 Bounded variations and absolute continuity -- 14 Fundamental theorems of calculus for the Lebesgue integral -- Part VII Appendices: A Compact and totally bounded metric spaces -- B Urysohn’s lemma and Tietze’s theorem. 
653 |a Functional analysis 
653 |a Measure theory 
653 |a Fourier Analysis 
653 |a Measure and Integration 
653 |a Functional Analysis 
653 |a Probability Theory and Stochastic Processes 
653 |a Probabilities 
653 |a Fourier analysis 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
490 0 |a La Matematica per il 3+2 
856 4 0 |u https://doi.org/10.1007/978-3-030-54940-4?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 515.42 
520 |a The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering