A First Course in Linear Models and Design of Experiments

This textbook presents the basic concepts of linear models, design and analysis of experiments. With the rigorous treatment of topics and provision of detailed proofs, this book aims at bridging the gap between basic and advanced topics of the subject. Initial chapters of the book explain linear est...

Full description

Bibliographic Details
Main Authors: Madhyastha, N. R. Mohan, Ravi, S. (Author), Praveena, A. S. (Author)
Format: eBook
Language:English
Published: Singapore Springer Nature Singapore 2020, 2020
Edition:1st ed. 2020
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
LEADER 02575nmm a2200313 u 4500
001 EB001904739
003 EBX01000000000000001067645
005 00000000000000.0
007 cr|||||||||||||||||||||
008 201208 ||| eng
020 |a 9789811586590 
100 1 |a Madhyastha, N. R. Mohan 
245 0 0 |a A First Course in Linear Models and Design of Experiments  |h Elektronische Ressource  |c by N. R. Mohan Madhyastha, S. Ravi, A. S. Praveena 
250 |a 1st ed. 2020 
260 |a Singapore  |b Springer Nature Singapore  |c 2020, 2020 
300 |a XIV, 230 p. 26 illus  |b online resource 
505 0 |a Linear Estimation -- Linear Hypotheses and Their Tests -- Block Designs -- Row-Column Designs -- Factorial Experiments -- Analysis of Covariance -- Missing Plot Technique -- Split Plot Design 
653 |a Statistical Theory and Methods 
653 |a Methodology of Data Collection and Processing 
653 |a Sampling (Statistics) 
653 |a Statistics  
700 1 |a Ravi, S.  |e [author] 
700 1 |a Praveena, A. S.  |e [author] 
041 0 7 |a eng  |2 ISO 639-2 
989 |b Springer  |a Springer eBooks 2005- 
028 5 0 |a 10.1007/978-981-15-8659-0 
856 4 0 |u https://doi.org/10.1007/978-981-15-8659-0?nosfx=y  |x Verlag  |3 Volltext 
082 0 |a 519.5 
520 |a This textbook presents the basic concepts of linear models, design and analysis of experiments. With the rigorous treatment of topics and provision of detailed proofs, this book aims at bridging the gap between basic and advanced topics of the subject. Initial chapters of the book explain linear estimation in linear models and testing of linear hypotheses, and the later chapters apply this theory to the analysis of specific models in designing statistical experiments. The book includes topics on the basic theory of linear models covering estimability, criteria for estimability, Gauss–Markov theorem, confidence interval estimation, linear hypotheses and likelihood ratio tests, the general theory of analysis of general block designs, complete and incomplete block designs, general row column designs with Latin square design and Youden square design as particular cases, symmetric factorial experiments, missing plot technique, analyses of covariance models, split plot and splitblock designs. Every chapter has examples to illustrate the theoretical results and exercises complementing the topics discussed. R codes are provided at the end of every chapter for at least one illustrative example from the chapter enabling readers to write similar codes for other examples and exercise