Advanced Analytics in Power BI with R and Python Ingesting, Transforming, Visualizing

This easy-to-follow guide provides R and Python recipes to help you learn and apply the top languages in the field of data analytics to your work in Microsoft Power BI. Data analytics expert and author Ryan Wade shows you how to use R and Python to perform tasks that are extremely hard to do, if not...

Full description

Bibliographic Details
Main Author: Wade, Ryan
Format: eBook
Language:English
Published: Berkeley, CA Apress 2020, 2020
Edition:1st ed. 2020
Subjects:
Online Access:
Collection: Springer eBooks 2005- - Collection details see MPG.ReNa
Description
Summary:This easy-to-follow guide provides R and Python recipes to help you learn and apply the top languages in the field of data analytics to your work in Microsoft Power BI. Data analytics expert and author Ryan Wade shows you how to use R and Python to perform tasks that are extremely hard to do, if not impossible, using native Power BI tools without Power BI Premium capacity. For example, you will learn to score Power BI data using custom data science models, including powerful models from Microsoft Cognitive Services. The R and Python languages are powerful complements to Power BI. They enable advanced data transformation techniques that are difficult to perform in Power BI in its default configuration, but become easier through the application of data wrangling features that languages such as R and Python support. If you are a BI developer, business analyst, data analyst, or a data scientist who wants to push Power BI and transform it from beingjust a business intelligence tool into an advanced data analytics tool, then this is the book to help you to do that. You will: Create advanced data visualizations through R using the ggplot2 package Ingest data using R and Python to overcome the limitations of Power Query Apply machine learning models to your data using R and Python Incorporate advanced AI in Power BI via Microsoft Cognitive Services, IBM Watson, and pre-trained models in SQL Server Machine Learning Services Perform string manipulations not otherwise possible in Power BI using R and Python
Physical Description:XLVI, 391 p. 84 illus online resource
ISBN:9781484258293