04566nmm a2200397 u 4500001001200000003002700012005001700039007002400056008004100080020001800121100003700139245023000176250001700406260005300423300006200476505053200538505098601070505090402056653002702960653002602987653001303013653001203026653003303038653002803071653002603099700003103125700003203156700003103188041001903219989003603238490005303274028003003327856007203357082001103429520072803440EB001902950EBX0100000000000000106585900000000000000.0cr|||||||||||||||||||||201006 ||| eng a97898115545511 aShahid, Mohammad Hasane[editor]00aDifferential Geometry, Algebra, and AnalysishElektronische RessourcebICDGAA 2016, New Delhi, India, November 15–17cedited by Mohammad Hasan Shahid, Mohammad Ashraf, Falleh Al-Solamy, Yasunori Kimura, Gabriel Eduard Vilcu a1st ed. 2020 aSingaporebSpringer Nature Singaporec2020, 2020 aXII, 284 p. 26 illus., 4 illus. in colorbonline resource0 aD. Kaur and R.K. Mohanty, A higher-order finite difference method for numerical solution of the Kuramoto-Sivashinsky equation -- B. Kaur, An extension of the Robe’s problem -- N. Rao, A. Wafi and S. Khatoon, Better rate of convergence by modified Integral type operators -- R. Gandhi, S. K. Sharma and B. S. Komal, Generalized composition operators and Evaluation Kernel on weighted Hardy space -- R. Ali and M. Shahzad, Common solution to generalized general variational-like inequality and hierarchical fixed point problems0 aPart 2 – Algebra: Luisa Cairini, Vincezo De Filippis and G. Scudo, Product of generalized derivations having commuting values on lie ideals -- C. Haetinger, M. Ashraf and M. A. Siddeeque, Some extensions theorems in the ring of quotients of *-prime rings -- M. Issoual and N. Mahdo, Rings in which every 2-absobing ideal is prime -- N. Ur Rehman, M. A. Raza and M. R. Mozumder, A note on skew-commutators with derivations on ideals -- N. Dehghani and M. R. Vedadi, A brief survey on semiprime and weakly compressible modules -- H. Alhazmi, S. Ali, A. Abbasi and M. R. Mozumder, On commutativity of prime rings with involution involving pair of Derivations -- Part 3 – Analysis: T. Ibaraki, S. Kajiba, and Y. Kimura, Approximation of a common fixed point of two nonlinear mappings with nonsummable errors in a Banach space -- Y. Kimura, Convex minimization problems on geodesic spaces and the shrinking projection method with errors -- T. Kawasaki, An extension of integrals -- 0 aPart 1 - Differential Geometry: S. Suzuki and Y. Matsuyama, On complete minimal submanifolds in a sphere -- M. Belkhelfa and F. Z. Kadi, The study of Ricci semi symmetry of normal complex contact manifold -- R. Sachdeva, R. Kumar and S. S. Bhatia, Warped product slant lightlike submanifolds of indefinite Kaehler manifolds -- S. Pandey, R. Prasad and S. K. Verma, Concircular curvature tensor’s properties on Lorentzian para-Sasakian manifolds -- Mohd. Aquib, F. R. Al-Solamy, M. Jamali, M. T. Aldossary and M. N. Boyom -- Inequalities for statistical submanifolds in Sasakian statistical manifolds -- J. Roy, L. I. Piscoran, S. K. Hui, Certain classes of warped product submanifolds of Sasakian manifolds and applications -- M. Ahmad, Jae-Bok Jun and M. A. Qayyoom, Hypersurfaces of a metallic Riemannian manifold -- M. S. Lone, Willmore surfaces in three dimensional simply isotropic spaces -- aGeometry, Differential aMathematical analysis aAnalysis aAlgebra aManifolds and Cell Complexes aManifolds (Mathematics) aDifferential Geometry1 aAshraf, Mohammade[editor]1 aAl-Solamy, Fallehe[editor]1 aKimura, Yasunorie[editor]07aeng2ISO 639-2 bSpringeraSpringer eBooks 2005-0 aSpringer Proceedings in Mathematics & Statistics50a10.1007/978-981-15-5455-140uhttps://doi.org/10.1007/978-981-15-5455-1?nosfx=yxVerlag3Volltext0 a516.36 aThis book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics